

Day: 1

Thursday, June 17, 2021⁵ 2:00PM-6:30PM EDT⁶

Problem 1. In $\triangle ABC$, prove that D^7 , E^{12} , X^{13} , and Y^{16} are concyclic.

Problem 2. Given n^{19} and A^{20} , prove that there exists an infinite sequence b_1, b_2, \ldots^{23} such that S^{24} is an integer.

Problem 3. Determine the maximum possible number of diverse cells²⁵ in \mathcal{G}^{26} .

Time limit: 4 hours 30 minutes. Each problem is worth 7 points.

¹referring to the length and size of the marginalia.

²referring to the usage of footnotes.

³referring to the terms in each problem (points, vocabulary, etc.) being defined by footnotes. ⁴the common address that *localhost* resolves to, indicating the current computer being used. ⁵here we employ the Gregorian calendar system.

 $^{^{6} \}rm also$ known as 11:00 AM–3:30PM PDT, 12:00PM–4:30PM MDT, 1:00PM–5:30PM CDT.

⁷D is the point where the circumcircle of $\triangle AP^{8}Q^{9}$ is tangent to side BC.

 $^{^{8}}P$ is a point on side AB.

 $^{{}^{9}}Q$ is a point on side AC such that the circumcircle of $\triangle AP^{10}Q$ is tangent to side BC. ${}^{10}P$, loc. cit.¹¹

¹¹short for *loco citato*, meaning "in the place cited."

 $^{{}^{12}}E$ lies on side BC such that BD = EC.

¹³X is defined as the second intersection of line DP^{14} with the circumcircle of $\triangle CDQ^{15}$.

 $^{^{14}}P,$ loc. cit.

 $^{^{15}}Q$, loc. cit.

 $^{^{16}}Y$ is defined symmetrically to X; it is the second intersection of line DQ^{17} with the circumcircle of $\triangle BDP^{18}$.

 $^{^{17}}Q$, loc. cit.

 $^{^{18}}P$, loc. cit.

 $^{^{19}}n > 1$ is an integer.

²⁰here, A is defined as the set $\{a_1, a_2, ..., a_n\}^{21}$.

²¹here, the sequence of integers a_1, \ldots, a_n is defined so that $n \mid a_i - i^{22}$.

 $^{^{22}1 \}le i \le n$ is an integer.

²³where $b_k \in A$ for all positive integers k.

²⁴here, S is defined as the sum $\sum_{k=1}^{\infty} \frac{b_k}{n^k}$.

 $^{^{}k}$ this is an exponent, not a footnote.

²⁵a cell is *diverse* if, among the 199 cells in its row or column, every color appears at least once.

 $^{^{26}\}mathcal{G}$ is a 100 \times 100 grid in which each cell is colored with one of 101 colors.

Extremely Long & Small Marginalia Olympiad

23rd ELSMO 127.0.0.1

Day: 2

Friday, June 18, 2021 2:00PM-6:30PM EDT

Problem 4. If $\mathbb{N}^{27} = S_1^{28} \sqcup {}^{29}A_1^{30}$, prove that there exists exactly one index i^{2n+27} such that

$$\frac{1}{d_i}\prod_{j=1}^n d_j \in S_i.^{2n+28}$$

Problem 5. Up to equivalence 2^{n+29} , how many ω^2 sequences of equi-period $\omega^2 + 1$ k are there in the set of sequences with each entry in $[n]^{\omega^2+2}$, in terms of n and $k^{\omega^2+3}?^{\omega^2+4}$

Problem 6. Prove that the inradius of $\triangle ABC$ is twice the inradius of $\triangle DEF^{\omega^2+5}$.

²⁷here, \mathbb{N} refers to the set of positive integers. ²⁸here, S_1 is an infinite arithmetic progression. ²⁹this symbol refers to the *disjoint union*; that is, we write $A \sqcup B = C$ when $A \cup B = C$ and $A \cap B = \emptyset$. ³⁰here, $A_1 = S_2^{31} \sqcup A_2^{32}$. $^{31}\mathrm{here},\,S_2$ is an infinite arithmetic progression. 32 here, $A_2 = S_3^{33} \sqcup A_3^{34}$ ³³here, S_3 is an infinite arithmetic progression. ³⁴here, $A_3 = S_4^{35} \sqcup A_4^{36}$. $^{2n+24}$ here, $A_{n-2} = S_{n-1}^{2n+25} \sqcup S_n^{2n+26}$. $^{2n+25}$ here, S_{n-1} is an infinite arithmetic progression. $^{2n+26}$ here, S_n is an infinite arithmetic progression. 2n + 27i, loc. cit. 2n + 28 for each *i*, let d_i be the common difference of the arithmetic progression formed by the elements of S_i . 2n + 29 two infinite sequences $\{s_i\}_{i \ge 1}$ and $\{t_i\}_{i \ge 1}$ are equivalent if the conditions outlined in footnotes i, for $2n + 30 \le i < \omega^2$, all hold. 2n + 30 ${}^{30}s_1 = s_1$ if and only if $t_1 = t_1$. ${}^{2n+31}s_1 = s_2$ if and only if $t_1 = t_2$. ${}^{2n+32}s_1 = s_3$ if and only if $t_1 = t_3$. ${}^{\omega}s_2 = s_1$ if and only if $t_2 = t_1$. $\omega + 1 s_2 = s_2$ if and only if $t_2 = t_2$. $\omega + 2s_2 = s_3$ if and only if $t_2 = t_3$. $^{\omega+2}s_3 = s_1$ if and only if $t_3 = t_1$. $\omega \cdot 2 + 1 s_3 = s_2$ if and only if $t_3 = t_2$. $\omega \cdot 2 + 2s_3 = s_3$ if and only if $t_3 = t_3$. $\omega^{(i-1)+(j-1)}s_i = s_j$ if and only if $t_i = t_j$. ω^2 in terms of n and k. $\omega^2 + 1$ a sequence $\{r_i\}_{i\geq 1}$ has equi-period k if r_1, r_2, \ldots and r_{k+1}, r_{k+2}, \ldots are equivalent. $\omega^2 + 2[n]$ refers to the set $\{1, \ldots, n\}$. $\omega^2 + 3n$ and k are fixed positive integers. $\omega^2 + 4$ that is, determine the largest integer M such that M infinite sequences with equi-period k can be chosen such that no two chosen sequences are equivalent to each other. $\omega^2 + 5$ points D, E, and F lie on sides BC, CA, and AB, respectively, such that quadrilaterals AFDE, BDEF, and CEFDare tangential $\omega^2 + 6$. $\omega^2 + 6$ a convex quadrilateral is *tangential* if there is a circle tangent to all four sides of the quadrilateral.

> Time limit: 4 hours 30 minutes. Each problem is worth 7 points.