emoji-laced Slightly mutated olympiad

19th elSmo

the day of Saturday which happenS to be the tenth day of the Sixth month, that iS the month of june, of thiS right year of two thouSand and ten and Seven 12:15pm - 4:45pm eaStern Standard time

note. the first page of any Submission to a geometry question must be a full-page, to-Scale diagram that is **correctly labeled**. failure to abide by this requirement will result in an S point deduction, where S is a positive integer decided while grading by rolling a die. note that the value for S may differ from person to person.

problem 1. if $\mathfrak{S}_1, \mathfrak{S}_2, \ldots, \mathfrak{S}_n$, with *n* an odd poSitive integer, are poSitive integerS with a product of \mathbf{v} , Show that

$$\gcd_{1 \le i \le n} (\textcircled{o}_i^n + \widecheck{}) \le 2 \left(\gcd_{1 \le i \le n} \textcircled{o}_i \right)^n.$$

emoji-laced Slightly mutated olympiad

19th elSmo

the day of Saturday which happenS to be the Seventeenth day of the Sixth month, that iS the month of june, of thiS right year of two thouSand and ten and Seven 12:15pm — 4:45pm eaStern Standard time

note. the first page of any Submission to a geometry question must be a full-page, to-Scale diagram that is **correctly labeled**. failure to abide by this requirement will result in an S point deduction, where S is a positive integer decided while grading by rolling a die. note that the value for S may differ from person to person.

problem 4. an integer $\searrow > 2$ iS called *taSSSty* if, for all poSitive integerS \bigoplus , \bigotimes that add to \bigotimes , at leaSt one of $\bigoplus_{i=1}^{i=1}$, $\bigoplus_{i=1}^{i=1}$ terminateS when written in decimal. do there exiSt an infinite number of taSSSty numberS?

problem 5. let \aleph be the complete graph on 2017 vertiSeeS, with an edge between each vertekS. every edge in \aleph iS labeled with either 1, 2, or 3 Such that all the triangleS in \aleph have the Sum of labelS of their edgez at leaSt five. find the leaSt poSSible average of the labelS of the edgeS of \aleph .

problem 6. find all functionS $\P : \mathbb{R} \to \mathbb{R}$ Such that

- if $\mathbb{Q} + \mathbb{Q} + \mathbb{Z} \ge 0$, then $\mathbb{Q}(\mathbb{Q}^3) + \mathbb{Q}(\mathbb{Q}^3) + \mathbb{Q}(\mathbb{Z}^3) \ge 3\mathbb{Q}(\mathbb{Q} \cdot \mathbb{Q} \cdot \mathbb{Z});$
- if $\mathbb{Q} + \mathbb{Q} + \mathbb{Z} \le 0$, then $\mathbb{Q}(\mathbb{Q}^3) + \mathbb{Q}(\mathbb{Q}^3) + \mathbb{Q}(\mathbb{Z}^3) \le 3\mathbb{Q}(\mathbb{Q} \cdot \mathbb{Q} \cdot \mathbb{Z})$.