abcdEfghijkLMnOpqrtuvwxyz

26th ELMO PITTBURGH, PA

Year: 2024

Day: 1

June 8, 2024 1:20PM-5:50PM EDT

Problem 1. In convex quadrilateral ABCD, let diagonal \overline{AC} and \overline{BD} interect at E. Let the circumcircle of ADE and BCE interect \overline{AB} again at $P \neq A$ and $Q \neq B$, repectively. Let the circumcircle of ACP interect \overline{AD} again at $R \neq A$, and let the circumcircle of RDQ interect RD again at $R \neq A$, and are concyclic.

Problem 2. For poitive integer a and b, an (a,b)-huffle of a deck of a+b card i any huffle that preerve the relative order of the top a card and the relative order of the bottom b card. Let $n, k, a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$ be fixed poitive integer uch that $a_i + b_i = n$ for all $1 \le i \le k$. Big Bird ha a deck of n card and will perform an (a_i, b_i) -huffle for each $1 \le i \le k$, in acending order of i. uppose that Big Bird can revere the order of the deck. Prove that Big Bird can alo achieve any of the n! permutation of the card.

Problem 3. For ome pointive integer n, Elmo write down the equation

$$x_1 + x_2 + \dots + x_n = x_1 + x_2 + \dots + x_n.$$

Elmo inert at leat one f to the left ide of the equation and add parenthee to create a valid functional equation. For example, if n = 3, Elmo could have created the equation

$$f(x_1 + f(f(x_2) + x_3)) = x_1 + x_2 + x_3.$$

Cookie Monter come up with a function $f: \mathbb{Q} \to \mathbb{Q}$ which i a olution to Elmo' functional equation. (In other word, Elmo' equation i atified for all choice of $x_1, \ldots, x_n \in \mathbb{Q}$). I it poible that there i no integer k (poibly depending on f) uch that $f^k(x) = x$ for all x?

abcdEfghijkLMnOpqrtuvwxyz

26th ELMO PITTBURGH, PA

Year: 2024

Day: **2**

June 15, 2024 1:20PM-5:50PM EDT

Problem 4. Let n be a poitive integer. Find the number of equence $a_0, a_1, a_2, \ldots, a_{2n}$ of integer in the range [0, n] uch that for all integer $0 \le k \le n$ and all nonnegative integer m, there exit an integer $k \le i \le 2k$ uch that $\lfloor k/2^m \rfloor = a_i$.

Problem 5. In triangle ABC with AB < AC and AB + AC = 2BC, let \underline{M} be the midpoint of \overline{BC} . Choose point P on the extenion of \overline{BA} pat A and point Q on egment \overline{AC} uch that M lie on \overline{PQ} . Let X be on the oppoite ide of \overline{AB} from C uch that $\overline{AX} \parallel \overline{BC}$ and AX = AP = AQ. Let \overline{BX} interect the circumcircle of BMQ again at $Y \neq B$, and let \overline{CX} interect the circumcircle of CMP again at AX = AP = AQ. Prove that AX = AP = AQ are collinear.

Problem 6. For a prime p, let \mathbb{F}_p denote the integer modulo p, and let $\mathbb{F}_p[x]$ be the et of quartic polynomial with coefficient in \mathbb{F}_p . Find all p for which there exit a polynomial $P(x) \in \mathbb{F}_p[x]$ uch that for all integer k, there exit ome integer ℓ uch that $P(\ell) \equiv k \pmod{p}$. (Note that there are $p^3(p-1)$ quartic polynomial in \mathbb{F}_p in total.)