abcdEfghijkLMnOpqrstuvwxyz

26th ELMO PITTSBURGH, PA

Year: **2024**

Day: 1

June 8, 2024 1:20PM-5:50PM EDT

Problem 1. In convex quadrilateral ABCD, let diagonals \overline{AC} and \overline{BD} intersect at E. Let the circumcircles of ADE and BCE intersect \overline{AB} again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of ACP intersect \overline{AD} again at $R \neq A$, and let the circumcircle of BDQ intersect \overline{BC} again at $S \neq B$. Prove that A, B, R, and S are concyclic.

Problem 2. For positive integers a and b, an (a,b)-shuffle of a deck of a+b cards is any shuffle that preserves the relative order of the top a cards and the relative order of the bottom b cards. Let $n, k, a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$ be fixed positive integers such that $a_i + b_i = n$ for all $1 \le i \le k$. Big Bird has a deck of n cards and will perform an (a_i, b_i) -shuffle for each $1 \le i \le k$, in ascending order of i. Suppose that Big Bird can reverse the order of the deck. Prove that Big Bird can also achieve any of the n! permutations of the cards.

Problem 3. For some positive integer n, Elmo writes down the equation

$$x_1 + x_2 + \dots + x_n = x_1 + x_2 + \dots + x_n.$$

Elmo inserts at least one f to the left side of the equation and adds parentheses to create a valid functional equation. For example, if n = 3, Elmo could have created the equation

$$f(x_1 + f(f(x_2) + x_3)) = x_1 + x_2 + x_3.$$

Cookie Monster comes up with a function $f: \mathbb{Q} \to \mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1, \ldots, x_n \in \mathbb{Q}$). Is it possible that there is no integer k (possibly depending on f) such that $f^k(x) = x$ for all x?

abcdEfghijkLMnOpqrstuvwxyz

26th ELMO Pittsburgh, PA

Year: 2024

Day: **2**

June 15, 2024 1:20PM-5:50PM EDT

Problem 4. Let n be a positive integer. Find the number of sequences $a_0, a_1, a_2, \ldots, a_{2n}$ of integers in the range [0, n] such that for all integers $0 \le k \le n$ and all nonnegative integers m, there exists an integer $k \le i \le 2k$ such that $\lfloor k/2^m \rfloor = a_i$.

Problem 5. In triangle ABC with AB < AC and AB + AC = 2BC, let M be the midpoint of \overline{BC} . Choose point P on the extension of \overline{BA} past A and point Q on segment \overline{AC} such that M lies on \overline{PQ} . Let X be on the opposite side of \overline{AB} from C such that $\overline{AX} \parallel \overline{BC}$ and AX = AP = AQ. Let \overline{BX} intersect the circumcircle of BMQ again at $Y \neq B$, and let \overline{CX} intersect the circumcircle of CMP again at $Z \neq C$. Prove that A, Y, A and Z are collinear.

Problem 6. For a prime p, let \mathbb{F}_p denote the integers modulo p, and let $\mathbb{F}_p^{(4)}[x]$ be the set of quartic polynomials with coefficients in \mathbb{F}_p . Find all p for which there exists a polynomial $P(x) \in \mathbb{F}_p^{(4)}[x]$ such that for all integers k, there exists some integer ℓ such that $P(\ell) \equiv k \pmod{p}$. (Note that there are $p^4(p-1)$ quartic polynomials in \mathbb{F}_p in total.)