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Problems

A1. Find all polynomials P (x) with real coefficients such that for all nonzero real numbers

x,

P (x) + P

(
1

x

)
=

P
(
x+ 1

x

)
+ P

(
x− 1

x

)
2

.

(Holden Mui)

A2. Let R>0 denote the set of positive real numbers. Find all functions f : R>0 → R>0 such

that for all positive real numbers x and y,

f(xy + 1) = f(x)f

(
1

x
+ f

(
1

y

))
.

(Luke Robitaille)

A3. Does there exist an infinite sequence of integers a0, a1, a2, . . . such that a0 ̸= 0 and, for

any integer n ≥ 0, the polynomial

Pn(x) =
n∑

k=0

akx
k

has n distinct real roots?

(Amol Rama, Espen Slettnes)

A4. Let f : R → R be a function such that for all real numbers x ̸= 1,

f(x− f(x)) + f(x) =
x2 − x+ 1

x− 1
.

Find all possible values of f(2023).

(Linus Tang)

A5. Find the minimum positive integer M for which there exist an integer n and n three-

variable polynomials P1(x, y, z), P2(x, y, z), . . ., Pn(x, y, z) with integer coefficients satisfying

Mxyz = P1(x, y, z)
3 + P2(x, y, z)

3 + · · ·+ Pn(x, y, z)
3.

(Karthik Vedula)

A6. Let R>0 denote the set of positive real numbers and R≥0 the set of nonnegative real

numbers. Find all functions f : R × R>0 → R≥0 such that for all real numbers a, b, x, y with

x, y > 0, we have

f(a, x) + f(b, y) = f(a+ b, x+ y) + f(ay − bx, xy(x+ y)).

(Luke Robitaille)
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C1. Elmo has 2023 cookie jars, all initially empty. Every day, he chooses two distinct jars

and places a cookie in each. Every night, Cookie Monster finds a jar with the most cookies and

eats all of them. If this process continues indefinitely, what is the maximum possible number

of cookies that the Cookie Monster could eat in one night?

(Espen Slettnes)

C2. Alice is performing a magic trick. She has a standard deck of 52 cards, which she may

order beforehand. She invites a volunteer to pick an integer 0 ≤ n ≤ 52, and cuts the deck into

a pile with the top n cards and a pile with the remaining 52− n. She then gives both piles to

the volunteer, who riffles them together and hands the deck back to her face down. (Thus, in

the resulting deck, the cards that were in the deck of size n appear in order, as do the cards

that were in the deck of size 52− n.)

Alice then flips the cards over one-by-one from the top. Before flipping over each card, she

may choose to guess the color of the card she is about to flip over. She stops if she guesses

incorrectly. What is the maximum number of correct guesses she can guarantee?

(Espen Slettnes)

C3. Find all pairs of positive integers (a, b) with the following property: there exists an

integer N such that for any integers m ≥ N and n ≥ N , every m× n grid of unit squares may

be partitioned into a× b rectangles and fewer than ab unit squares.

(Holden Mui)

C4. Let n be a positive integer and consider an n×n square grid. For 1 ≤ k ≤ n, a python of

length k is a snake that occupies k consecutive cells in a single row, and no other cells. Similarly,

an anaconda of length k is a snake that occupies k consecutive cells in a single column, and no

other cells.

The grid contains at least one python or anaconda, and it satisfies the following properties:

• No cell is occupied by multiple snakes.

• If a cell in the grid is immediately to the left or immediately to the right of a python, then

that cell must be occupied by an anaconda.

• If a cell in the grid is immediately to above or immediately below an anaconda, then that

cell must be occupied by a python.

Prove that the sum of the squares of the lengths of the snakes is at least n2.

(Linus Tang)

C5. Define the mexth of k sets as the kth smallest positive integer that none of them contain,

if it exists. Does there exist a family F of sets of positive integers such that

• for any nonempty finite subset G of F , the mexth of G exists, and

• for any positive integer n, there is exactly one nonempty finite subset G of F such that n

is the mexth of G.

(Espen Slettnes)
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C6. For a set S of positive integers and positive integer n, consider the game of (n, S)-nim,

which is as follows. A pile starts with n stones. Two players, Anthony and Brandon, alternate

turns removing stones from the pile, with Anthony going first. On any turn, the number of

stones removed must be an element of S. The last player to move wins. Let f(S) denote the

set of positive integers n for which Anthony has a winning strategy in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T ), f(f(T )), . . .

be eventually constant?

(Brandon Wang, Edward Wan)

C7. A discrete hexagon with center (a, b, c) (where a, b, c are integers) and radius r (a

nonnegative integer) is the set of lattice points (x, y, z) such that x + y + z = a + b + c and

max(|x− a|, |y − b|, |z − c|) ≤ r.

Let n be a nonnegative integer and S be the set of triples (x, y, z) of nonnegative integers

such that x + y + z = n. If S is partitioned into discrete hexagons, show that at least n + 1

hexagons are needed.

(Linus Tang)

C8. Let n ≥ 3 be a fixed integer, and let α be a fixed positive real number. There are

n numbers written around a circle such that there is exactly one 1 and the rest are 0’s. An

operation consists of picking a number a in the circle, subtracting some positive real x ≤ a from

it, and adding αx to each of its neighbors.

Find all pairs (n, α) such that all the numbers in the circle can be made equal after a finite

number of operations.

(Anthony Wang)

G1. Let ABCDE be a regular pentagon. Let P be a variable point on the interior of segment

AB such that PA ̸= PB. The circumcircles of △PAE and △PBC meet again at Q. Let R be

the circumcenter of △DPQ. Show that as P varies, R lies on a fixed line.

(Karthik Vedula)

G2. Let ABC be an acute scalene triangle with orthocenter H. Line BH intersects AC at

E and line CH intersects AB at F . Let X be the foot of the perpendicular from H to the

line through A parallel to EF . Point B1 lies on line XF such that BB1 is parallel to AC, and

point C1 lies on line XE such that CC1 is parallel to AB. Prove that points B, C, B1, C1 are

concyclic.

(Luke Robitaille)

G3. Two triangles intersect to form seven finite disjoint regions, six of which are triangles

with area 1. The last region is a hexagon with area A. Compute the minimum possible value

of A.

(Karthik Vedula)
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G4. Let D be a point on segment PQ. Let ω be a fixed circle passing through D, and let A

be a variable point on ω. Let X be the intersection of the tangent to the circumcircle of △ADP

at P and the tangent to the circumcircle of △ADQ at Q. Show that as A varies, X lies on a

fixed line.

(Elliott Liu, Anthony Wang)

G5. Let ABC be an acute triangle with circumcircle ω. Let P be a variable point on the

arc BC of ω not containing A. Squares BPDE and PCFG are constructed such that A, D,

E lie on the same side of line BP and A, F , G lie on the same side of line CP . Let H be the

intersection of lines DE and FG. Show that as P varies, H lies on a fixed circle.

(Karthik Vedula)

G6. Let ABCDEF be a convex cyclic hexagon such that quadrilateral ABDF is a square,

and the incenter of △ACE lines on BF . Diagonal CE intersects diagonals BD and DF at

points P and Q, respectively. Prove that the circumcircle of △DPQ is tangent to BF .

(Elliott Liu)

G7. Let E be an ellipse with foci F1 and F2, and let P be a point on E . Suppose lines PF1 and

PF2 intersect E again at distinct points A and B, and the tangents to E at A and B intersect

at point Q. Show that the midpoint of PQ lies on the circumcircle of △PF1F2.

(Karthik Vedula)

G8. Similar quadrilaterals ABCD ∼ A1B1C1D1 ∼ A2B2C2D2 lie in the plane such that

points A, A1, B2, B are collinear, points B, B1, C2, C are collinear, points C, C1, D2, D

are collinear, and points D, D1, A2, A are collinear. Prove that the intersections AC ∩ BD,

A1C1 ∩B1D1, and A2C2 ∩B2D2 are collinear.

A

B

C

D

A1

B1

C1

D1A2

B2

C2

D2

(Holden Mui)

N1. Let m be a positive integer. Find all polynomials P (x) with integer coefficients such

that for every integer n, there exists an integer k such that P (k) = nm.

(Raymond Feng)
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N2. Determine the greatest positive integer n for which there exists a sequence of distinct

positive integers s1, s2, . . ., sn satisfying

ss21 = ss32 = · · · = ssnn−1.

(Holden Mui)

N3. Let a and b be positive integers and let k ≤ b be a nonnegative integer. A lemonade

stand owns n ≥ k cups, of which k are initially full and n−k are initially empty. The lemonade

stand also has a filling machine and an emptying machine, which operate according to the

following rules:

• If at any moment, a completely empty cups are available, the filling machine spends the

next a minutes filling those a cups simultaneously and doing nothing else.

• If at any moment, b completely full cups are available, the emptying machine spends the

next b minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying

machine work without pausing. In terms of a, b, and k, what is the least possible value of n?

(Raymond Feng)

N4. Let d(n) denote the number of positive divisors of n. The sequence a0, a1, a2, . . . is

defined as follows: a0 = 1, and for all integers n ≥ 1,

an = d(an−1) + d(d(an−2)) + · · ·+ d(d(. . . d(a0) . . .))︸ ︷︷ ︸
n times

.

Show that for all integers n ≥ 1, we have an ≤ 3n.

(Karthik Vedula)

N5. An ordered pair (k, n) of positive integers is good if there exists an ordered quadruple

(a, b, c, d) of positive integers such that a3 + bk = c3 + dk and abcd = n. Prove that there exist

infinitely many positive integers n such that (2022, n) is not good but (2023, n) is good.

(Luke Robitaille)
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Solutions

A1. Find all polynomials P (x) with real coefficients such that for all nonzero real numbers

x,

P (x) + P

(
1

x

)
=

P
(
x+ 1

x

)
+ P

(
x− 1

x

)
2

.

(Holden Mui)

We begin by noticing that the substitution x 7→ 1
x gives

P (x+ 1
x) + P (x− 1

x)

2
= P (x) + P

(
1

x

)
=

P (x+ 1
x) + P ( 1x − x)

2
,

implying P (x− 1
x) = P ( 1x − x) for all x. This readily implies P is even.

Now note that for even n ≥ 6,

xn +

(
1

x

)n

−
(x+ 1

x)
n + (x− 1

x)
n

2
=

(
n

2

)
xn−4 + o(xn−4),

so if degP ≥ 6, the difference between the two sides of the functional equation has a term of

degree degP − 4 > 0. Thus degP ≤ 4.

It is then routine to check that P (x) ≡ x2 is a solution, and that P (x) ≡ x4 + r is a solution

if and only if r = 6. Hence the solution set is

P (x) ≡ a(x4 + 6) + bx2 where a, b ∈ R.

10
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A2. Let R>0 denote the set of positive real numbers. Find all functions f : R>0 → R>0 such

that for all positive real numbers x and y,

f(xy + 1) = f(x)f

(
1

x
+ f

(
1

y

))
.

(Luke Robitaille)

The answers are f(x) ≡ 1 and f(x) ≡ 1
x , which work. Now we show they are the only

solutions.

Let P (x, y) denote the assertion.

Claim 1. f(1) = 1.

Proof. By taking any xy + 1 = x and c = 1
x + f( 1y ), we have f(c) = 1. By P (1, 1c ) and P (c, 1c ),

we have

f(1)f(2) = f

(
1 +

1

c

)
= f(2),

implying f(1) = 1.

Claim 2. If f(a) = f(b), then f(ax+ 1) = f(bx+ 1) for all x.

Proof. By P (x, 1a) and P (x, 1b ), we have

f
(x
a
+ 1

)
= f(x)f

(
1

x
+ f(a)

)
= f(x)f

(
1

x
+ f(b)

)
= f

(x
b
+ 1

)
.

Claim 3. If f(a) = f(b), then f(ax) = f(bx) for all x.

Proof. By P (ax, 1) and P (bx, 1), we have

f(ax) =
f(ax+ 1)

f( 1
ax + 1)

=
f(bx+ 1)

f( 1
bx + 1)

= f(bx).

Now if f is injective, P (1, 1x) gives f(1 +
1
x)f = f(f(x) + 1), implying f(x) = 1

x for all x, so

we are done. Otherwise assume f is not injective, so f(a) = f(b) for some a < b.

Let c = b/a > 1. By Claim 3, we have f(c) = 1. Then Claim 2 implies f(x+ 1) = f(cx+ 1)

for all x, and Claim 3 then implies

f

(
cx+ 1

x+ 1

)
= 1 for all x.

As x varies, cx+1
x+1 ranges across (1, c), so we have f(x) = 1 for all x ∈ (1, c).

But Claim 3 simply gives f(x) = f(cx) for all x, so we readily have f(x) = 1 everywhere.
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A3. Does there exist an infinite sequence of integers a0, a1, a2, . . . such that a0 ̸= 0 and, for

any integer n ≥ 0, the polynomial

Pn(x) =
n∑

k=0

akx
k

has n distinct real roots?

(Amol Rama, Espen Slettnes)

By scaling, assume for convenience a0 = 1. The key is the following estimate:

Lemma

For a polynomial P (x) = 1 + b1x+ · · ·+ bnx
n with only real roots, we have

|bn| ≤
(
b21 − 2b2

n

)n/2

.

Proof. Let the roots be r1, . . . , rn. Then by AM-GM,

b21 − 2b2 =
n∑

i=1

1

r2i
≥ n

(r1 · · · rn)2/n
= nb2/nn .

Let C = b21 − 2b2. Then the lemma gives

|an| ≤
(
C

n

)n/2

→ 0

as n → ∞, contradiction since |an| > 1 for all n.

12



25th ELMO 2023 Shortlisted Problems

A4. Let f : R → R be a function such that for all real numbers x ̸= 1,

f(x− f(x)) + f(x) =
x2 − x+ 1

x− 1
.

Find all possible values of f(2023).

(Linus Tang)

The answer is R \ {0, 2022, 2023, 2023 + 1
2022}.

We begin with the substitution g(x) = x − f(x), which transforms the functional equation

into

g(g(x)) =
1

1− x
for all x ̸= 1.

However note that h(x) = 1
1−x satisfies h3(x) = x for all x for x /∈ {0, 1}. Therefore:

• For c /∈ {0, 1, 2023,− 1
2022 ,

2022
2023}, we can let g(0) = g(1) = 1, construct the cycle

2023 7→ c 7→ − 1

2022
7→ h(c) 7→ 2022

2023
7→ h2(c) 7→ 2023,

and let g(x) = h(h(x)) for all other x, so this value of c works.

• For c = 2022
2023 , let g(0) = g(1) = 1 and let g(x) = h(h(x)) for all x, so this value of c works.

• For c = 2023, if g(2023) = c, we have g(g(2023)) = 2023 ̸= h(2023), so this value of c fails.

• For c = − 1
2022 , if g(2023) = c, we have g(c) = g(g(2023)) = h(2023) = c implying

g(g(c)) = c ̸= h(c).

• For c ∈ {0, 1}, if g(2023) = c, since g6(2023) = 2023 we have g6(c) = c. Note that

g2(0) = h(0) = 1 and if g2(1) = t with t /∈ {0, 1}, then g2 will send 0 7→ 1 7→ t 7→ h(t) 7→
h(h(t)) 7→ t 7→ · · · , contradicting g6(c) = c. But if t = 0 then g2 sends 0 7→ 1 7→ 0 7→ · · ·
so g6(c) ̸= c, and if t = 1 then g2(1) = 1 hence g2(2023) = 2023 ̸= h(2023). Hence this

value of c fails.
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A5. Find the minimum positive integer M for which there exist an integer n and n three-

variable polynomials P1(x, y, z), P2(x, y, z), . . ., Pn(x, y, z) with integer coefficients satisfying

Mxyz = P1(x, y, z)
3 + P2(x, y, z)

3 + · · ·+ Pn(x, y, z)
3.

(Karthik Vedula)

We first reduce the problem to the one-variable case:

Lemma

Mxyz is the sum of cubes of three-variable polynomials if and only if Mx is the sum of

cubes of one-variable polynomials.

Proof. If Mxyz =
∑

Pk(x, y, z)
3, then Mx =

∑
Pk(x, 1, 1)

3. Moreover if Mx =
∑

Qk(x)
3 then

Mxyz =
∑

Qk(xyz)
3.

Now we show the answer is M = 6, achieved by

6x = (x+ 1)3 + (x− 1)3 + (−x)3 + (−x)3.

For the lower bound, write

Mx =

n∑
k=1

Pk(x)
3.

We will show 6 | M , which suffices.

Let ω be a primitive third root of unity, so ω2 = −ω − 1. Then for each k, there are integers

ak and bk with Pk(ω) = akω + bk. Hence

Mω =
n∑

k=1

(akω + bk)
3

=
n∑

i=1

[
a3k + b3k + 3a2kbkω + 3akb

2
k(−ω − 1)

]
=

n∑
i=1

[
a3k + b3k − 3akb

2
k + 3akbk(ak − bk)ω

]
.

Since 1 and ω are linearly independent, we must have

M =

n∑
k=1

3akbk(ak − bk).

However for all integers ak and bk, we have 6 | 3akbk(ak − bk), so 6 | M .

14



25th ELMO 2023 Shortlisted Problems

A6. Let R>0 denote the set of positive real numbers and R≥0 the set of nonnegative real

numbers. Find all functions f : R × R>0 → R≥0 such that for all real numbers a, b, x, y with

x, y > 0, we have

f(a, x) + f(b, y) = f(a+ b, x+ y) + f(ay − bx, xy(x+ y)).

(Luke Robitaille)

The following solution is provided by Justin Lee and Linus Tang.

The answer is

f(a, x) ≡ k
a2

x
+ ℓ, where k, ℓ ≥ 0.

These work, so we check they are the only solutions.

Let P (a, x, b, y) denote the assertion.

Claim 1. f(0, x) is a constant function.

To show Claim 1, let g : R>0 → R≥0 by g(x) ≡ f(0, x) and let Q(x, y) denote P (0, x, 0, y),

which gives

g(x) + g(y) = g(x+ y) + g(xy(x+ y))

for all x, y > 0.

Claim 2. For x > 0 we have g(x) = g( 1x).

Proof of Claim 2. For x < y, we have from Q(y − x, x) that

g(y − x) + g(x) = g(y) + g((y − x)xy).

When xy = 1 this gives g(x) = g(y).

Proof of Claim 1. For all x > 0, we have that

g(x) + g(1) = g (x+ 1) + g(x(x+ 1)) (Q(x, 1))

= g

(
1

x+ 1

)
+ g

(
1

x(x+ 1)

)
(Claim 2)

= g

(
1

x

)
+ g

(
1

x2(x+ 1)2

)
(Q( 1

x+1 ,
1

x2+x
))

= g(x) + g(x2(x+ 1)2) (Claim 2),

hence g(x2(x + 1)2) = g(1) for all x > 0. But x 7→ x2(x + 1)2 on R>0 → R>0 is surjective, so

g(x) = g(1) for all x > 0.

Now we may shift f by constants, so shift so that f(0, x) = 0 for all x. Then f : R×R>0 → R
is bounded below.

Claim 3. For c > 0, we have f(ca, cx) = cf(a, x) for all a and x > 0.

Proof. For any d, we have from P (dx, x, dy, y) that

f(dx, x) + f(dy, y) = f(d(x+ y), x+ y),

so x 7→ f(dx, x) is Cauchy and bounded below, so it is linear (with 0 7→ 0). The claim readily

follows.
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Claim 4. For c > 0, we have f(a, cx) = 1
cf(a, x) for all a and x > 0.

Proof. By P (ca, cx, cb, cy) and Claim 3, we have

cf(a+ b, x+ y) + cf(ay − bx, xy(x+ y)) = cf(a, x) + cf(b, y)

= f(ca, cx) + f(cb, cy)

= f(c(a+ b), c(x+ y)) + f(c2(ay − bx), c3xy(x+ y))

= cf(a+ b, x+ y) + c2f(ay − bx, cxy(x+ y)),

implying

f(ay − bx, xy(x+ y)) = cf(ay − bx, cxy(x+ y))

for all a, b, x > 0, y > 0.

But as (a, x) and (b, y) vary across R× R>0, (ay − bx, xy(x+ y)) hits all values in R× R>0,

so the claim follows.

Claim 5. f(1, 1) = f(−1, 1).

Proof. By P (1, 1,−1, 1) and P (1, 1, 1, 1), we have

f(1, 1) + f(−1, 1) = f(2, 2) = 2f(1, 1),

so f(1, 1) = f(−1, 1).

Then for each (x, y), we have by Claims 3 and 4 that

f(x, y) =
|x|
y
f(x, |x|) = |x|2

y
f(±1, 1),

implying the desired since f(1, 1) = f(−1, 1).
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C1. Elmo has 2023 cookie jars, all initially empty. Every day, he chooses two distinct jars

and places a cookie in each. Every night, Cookie Monster finds a jar with the most cookies and

eats all of them. If this process continues indefinitely, what is the maximum possible number

of cookies that the Cookie Monster could eat in one night?

(Espen Slettnes)

The answer is 12 cookies.

Construction: By selecting two empty jars 1024 days in a row, Elmo may ensure that 1024

jars each have 1 cookie. By selecting two jars with 1 cookie 512 days in a row, Elmo may ensure

that 256 jars each have 2 cookies. By repeating this process, Elmo may ensure that there are

211−n jars with n cookies for each n.

Ultimately, Elmo can guarantee there is 1 jar with 11 cookies. The night after, the Cookie

Monster may eat 12 cookies.

Upper bound: Let jar i contain ai cookies, and consider

I =

2023∑
i=1

{
2ai ai > 0

0 ai = 0.

Claim. Before Elmo’s move, we always have I ≤ 4044.

Proof. Assume I ≤ 4044, and suppose Elmo puts cookies in jars containing a and b cookies

initially, with a ≤ b. We show that after the Cookie Monster’s operation, the resulting value of

I, say I ′, is also at most 4044.

If a > 0, then Elmo’s operation increases I by 2a+2b, whereas the Cookie Monster’s operation

decreases I by at least 2b+1 ≥ 2a + 2b, so I ′ ≤ I ≤ 4044.

If a = 0 but b > 0, then Elmo’s operation increases I by 1+2b, whereas the Cookie Monster’s

operation decreases I by at least 2b+1 ≥ 2b + 1, so I ′ ≤ I ≤ 4044.

Finally if a = b = 0, then Elmo’s operation increases I by 2, and the Cookie Monster’s

operation decreases I by at least I+2
2023 so

I ′ ≤ 2022

2023
(I + 2) ≤ 4044.

Thus before Elmo’s move, there is no jar with at least 12 cookies, so the maximum number

of cookies the Cookie Monster may eat is 12.
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C2. Alice is performing a magic trick. She has a standard deck of 52 cards, which she may

order beforehand. She invites a volunteer to pick an integer 0 ≤ n ≤ 52, and cuts the deck into

a pile with the top n cards and a pile with the remaining 52− n. She then gives both piles to

the volunteer, who riffles them together and hands the deck back to her face down. (Thus, in

the resulting deck, the cards that were in the deck of size n appear in order, as do the cards

that were in the deck of size 52− n.)

Alice then flips the cards over one-by-one from the top. Before flipping over each card, she

may choose to guess the color of the card she is about to flip over. She stops if she guesses

incorrectly. What is the maximum number of correct guesses she can guarantee?

(Espen Slettnes)

The maximum is 26 guesses.

Construction: Alice arranges the cards in alternating order of color. Consider the two decks

D1 and D2 that were riffled together. Then throughout the process, Alice may keep track of

the multiset

{color of the top card of D1, color of the top card of D2}.

Now whenever the top cards of D1 and D2 are the same color, Alice may successfully guess

the color of the next card dealt. As the process proceeds, whether the top cards of D1 and

D2 have the same color toggles after each move, so she may successfully guess the color of the

drawn card half the time.

Upper bound: The volunteer picks n = 51. Assume without loss of generality the bottom

card is black. Then Alice can never confidently guess the color of any red card, so she may

successfully guess at most 26 cards.
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C3. Find all pairs of positive integers (a, b) with the following property: there exists an

integer N such that for any integers m ≥ N and n ≥ N , every m× n grid of unit squares may

be partitioned into a× b rectangles and fewer than ab unit squares.

(Holden Mui)

The answers are (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2). Below is the author’s solution,

unedited.

Constructions: The constructions for 1×1 rectangles and 1×2 rectangles are obvious. For

1×3 rectangles, a construction for (m+3, n+3) can be obtained from a construction for (m,n)

as shown in Figure 2.1,

. . .

...

Figure 2.1: Induction for 1× 3 rectangles

so it suffices to give constructions for (1, 1), (1, 2), and (5, 5), by induction. The first two cases

are vacuous, and a 5× 5 grid can be tiled as shown in Figure 2.2.

Figure 2.2: Partitioning a 5× 5 rectangle into 1× 3 rectangles

Lastly, for 2× 3 rectangles, a construction for (m+6, n+6) can be obtained from (m,n) for

m,n ≥ 2 using a method similar to the 1× 3 case, since any k × 6 rectangle can be tiled with

2×3 rectangles for k ≥ 2, by writing k as the sum of a multiple of 2 and a multiple of 3. Hence,

it suffices to give constructions for all pairs (m,n) ∈ {2, 3, 4, 5, 6, 7}2, which is given in Figure

2.3.
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Figure 2.3: Constructions for (a, b) = (2, 3)
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Completeness of solution set: To show that no other pairs (a, b) work, consider the

following claim.

Claim. For c, d ∈ Z+ and k ≥ 4, any tiling of an (ck+2)×
(
dk +

⌈
k
2

⌉)
rectangle with 1×k

rectangles must leave at least k cells empty.

Proof. Consider a (ck + 2) ×
(
dk +

⌈
k
2

⌉)
with its bottom-left cell at the origin, and label each

cell with the sum of its coordinates modulo k.
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2

3

4

0

1

2

3

Figure 2.4: Example for k = 5, c = 1, d = 2

By construction, every 1 × k rectangle must cover one cell whose label is k − 1. However,

when k ≥ 4, no cell in the top-right-most 2 ×
⌈
k
2

⌉
rectangle can contain an k − 1, since the

top-right cell’s label is

(2− 1) +

(⌈
k

2

⌉
− 1

)
=

⌈
k

2

⌉
< k − 1.

Therefore, any tiling of 1× k rectangles must leave at least 2×
⌈
k
2

⌉
≥ k cells empty.

To show that no pairs (a, b) with max(a, b) ≥ 4 work, assume b ≥ 4. Since a × b rectangles

can be partitioned into a separate 1×b rectangles, it suffices to find values for c and d for which

a |

⌊
(bc+ 2)

(
bd+

⌈
b
2

⌉)
b

⌋
︸ ︷︷ ︸
number of 1× b rectangles

= bcd+

⌈
b

2

⌉
c+ 2d+ 1,

by the Claim. (For example, a 7 × 13 rectangle cannot contain six 3 × 5 rectangles since it

cannot contain eighteen 1× 5 rectangles.)

If b is even, then a must be odd or else large odd-sized grids cannot be partitioned. Since

bcd+

⌈
b

2

⌉
c+ 2d+ 1 =

(
b

2
c+ 1

)
(2d+ 1) ,

choosing d = a−1
2 works.

If b is odd, then choosing c = k(2d+ 1) gives

bcd+

⌈
b

2

⌉
c+ 2d+ 1 = (2d+ 1)

(
b
( c
2

)
+ 1

)
+

c

2
= (2d+ 1)

bk(2d+ 1) + 3

2
.

Then d can be chosen such that the first term contains all odd prime factors of a and k can be

chosen so that the second term contains all even prime factors of a.

Therefore, it suffices to check that (2, 2) and (3, 3) don’t work. (2, 2) doesn’t work because

each row in a partitioning of an odd-sized grid must contain a unit square, and (3, 3) doesn’t

work for similar reasons.
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C5. Define the mexth of k sets as the kth smallest positive integer that none of them contain,

if it exists. Does there exist a family F of sets of positive integers such that

• for any nonempty finite subset G of F , the mexth of G exists, and

• for any positive integer n, there is exactly one nonempty finite subset G of F such that n

is the mexth of G.

(Espen Slettnes)

The answer is yes.

First solution by explicit construction We let F = {S0, S1, S2, . . .}, where S0 = ∅ and for all

k ≥ 1,

Sk = {n : 0 ≤ (n mod 2k+1) ≤ 2k − 2} ∪ {2k − 1}.

That is, Sk excludes every number containing a 1 in the kth bit in binary, or with 0 in the kth

bit with only 1’s after, except 2k − 1.

For each set of nonnegative indices J = {j1 < · · · < jn}, we claim that the mexth of the n

sets Sj1 , . . . , Sjn is the positive integer N containing a 1 in bits j1, . . . , jn and 0’s elsewhere.

Of course N is excluded from each set, along with the number obtained by replacing bit ji with

0 and all smaller bits with 1, for each i = 1, . . . , n− 1.

It is easy to check there are no other numbers smaller than N excluded by all these sets, so

N is the mexth.

Second solution by freedom (Derek Liu, unedited) We use the following process to construct

such sets. We keep track of counters a, b, and n, where n is the number of sets we’ve created, a

will keep track of the mexth of the next set we create by itself, and b keeps track of the mexth

of the next subset of the first n sets that we want to address. The idea is that we will simply

have b increase really fast (e.g. powers of 10), in a “greedy”-esque algorithm; the counter a will

fill in the remaining numbers so that every number is the mexth of some collection of sets. Start

at n = 0, a = 1, b = 10.

Every time we create a new set, we obviously increment n by 1 (and let’s index this set as

set n). This new set will have mexth a, which we do by excluding a from this set. (There are

clearly no problems with this step.) Then, we increment a by 1; if it is now a power of 10, we

increment it again (as we will hit the powers of 10 using collections of multiple sets rather than

single sets).

Consider the subsets of the first n sets that contain the nth set, and order them by size (so

{n}, {1, n}, {2, n}, . . ., {1, 2, n}, . . .). We’ve addressed the mexth of {n} already; we will now

go down this list in order. Each time, we take the next set in the list and let the mexth of

the corresponding collection of sets be b; we do this by removing b, b − 1, b − 2, . . . (as many

numbers as needed) from all of the sets involved. Then, we multiply b by 10.

To verify that this construction is possible, we must ensure that for any collection G of at

least 2 sets, when we try to “create” the mexth of G, it is never the case that |G| or more

numbers are excluded from every set in G already. In fact, we claim at most one number can

be excluded from every set in G. Let k be the highest-numbered set in G.

Let M be the maximum element excluded from any set before we constructed set k. Notice

that M < b, so the only number less than M not in k is a. Furthermore, since we address

subsets of the first n sets in order of size, we address G before any superset of G.
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Hence, we could not have excluded any element above M from every set of G yet (because

the only way to do so would be by doing this for some superset of G, which hasn’t occurred

yet). Thus, at this point, at most one element is excluded from every set in G, so we can create

the mexth of G.

Therefore, this construction works.

Remark. Here is an example:

• Creating the 1st set: it excludes 1. Now a = 2 and b = 10.

• Creating the 2nd set: it excludes 2. Now a = 3.

– Creating the mexth of {1, 2}: exclude 9 and 10 from both set 1 and set 2. Now b = 100.

– Currently, the 1st set excludes {1, 9, 10}, while the 2nd set excludes {2, 9, 10}.

• Creating the 3rd set: it excludes 3. Now a = 4.

– Creating the mexth of {1, 3}: exclude 99 and 100 from both set 1 and set 3. Now

b = 1000.

– Creating the mexth of {2, 3}: exclude 999 and 1000 from both set 2 and set 3. Now

b = 10000.

– Creating the mexth of {1, 2, 3}: exclude 9998, 9999, and 10000 from sets 1, 2, and 3.

Now b = 100000.

Currently, set 1 excludes {1, 9, 10, 99, 100, 9998, 9999, 10000}, set 2 excludes {2, 9, 10, 999, 1000, 9998, 9999, 10000},
and set 3 excludes {3, 99, 100, 999, 1000, 9998, 9999, 10000}.

• etc.

Note that when we create the 9th set, we exclude 9 from it. This might seem like an issue because

9 is also excluded from sets 1 and 2. But this is resolved by simply excluding b only, not b and

b− 1, when creating the mexths of {1, 9} and {2, 9} (and excluding b and b− 1, but not b− 2, from

{1, 2, 9}).
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C6. For a set S of positive integers and positive integer n, consider the game of (n, S)-nim,

which is as follows. A pile starts with n stones. Two players, Anthony and Brandon, alternate

turns removing stones from the pile, with Anthony going first. On any turn, the number of

stones removed must be an element of S. The last player to move wins. Let f(S) denote the

set of positive integers n for which Anthony has a winning strategy in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T ), f(f(T )), . . .

be eventually constant?

(Brandon Wang, Edward Wan)

Yes, the sequence must be eventually constant. In what follows, let S = Z≥0 \ S, so f(S) =

S + f(S) for all S. Note that S ⊆ f(S) always, so the limit f∞(T ) is well-defined.

We take two cases.

First case: f∞(T ) is closed under addition. Let m = min(T \ 0), so m ∈ f∞(T ). Then all

multiples of m are in T ⊇ f∞(T ), but 1, 2, . . . , m − 1 are in T , so f(T ) is exactly the set of

non-multiples of m, implying f(T ) = f∞(T ).

Second case: There are a and b with a, b ∈ f∞(T ) and a+ b ∈ f∞(T ). Then there must be

an index j for which n ∈ f j(T ) ⇐⇒ n ∈ f∞(T ) for n ≤ a+ b. For n > a+ b, note:

• If n− a− b /∈ f j+1(T ) then n = (n− a− b) + (a+ b) ∈ f j+1(T ).

• If n− a− b ∈ f j+1(T ), then n− b = (n− a− b) + a ∈ f j+2(T ) so (n− b) + b ∈ f j+3(T ).

Thus all n > a+ b are in f j+3(T ) ⊆ f∞(T ), implying f j+3(T ) = f∞(T ).

Remark. Espen Slettnes claims that a modification of the above argument shows that f3(T ) =

f4(T ) for all T .
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C7. A discrete hexagon with center (a, b, c) (where a, b, c are integers) and radius r (a

nonnegative integer) is the set of lattice points (x, y, z) such that x + y + z = a + b + c and

max(|x− a|, |y − b|, |z − c|) ≤ r.

Let n be a nonnegative integer and S be the set of triples (x, y, z) of nonnegative integers

such that x + y + z = n. If S is partitioned into discrete hexagons, show that at least n + 1

hexagons are needed.

(Linus Tang)

We present two solutions.

First solution (author) Let B denote the set of points that lie on the bottom row of a hexagonal

tile. Consider the function f : B → B defined as follows:

• If b is the bottom-left point of its hexagonal tile, then f(b) = b.

• If b is the (i+ 1)th point from the left of the bottom row of a hexagonal tile, then f(b) is

the ith point from the left among the points lying immediately above the tile.

Draw a directed graph G connecting b → f(b) for each b. Then each connected component of

G is a chain of the form a1 → a2 → a3 → · · · → ak−1 → ak → ak, where ak is the bottom-left

corner of a hexagon.

Note that each point on the bottom row has an indegree of 0, and thus determines one such

chain. At the end of this chain is the bottom-left corner of a hexagonal tile. Thus the number

of hexagonal tiles is at least the number of points in the bottom row, which is n+ 1.

Second solution (Derek Liu) Consider the triangular grid T obtained by taking the centers of

all upside-down unit equilateral triangles in S and extending this grid one unit in each direction.

The grid T is shown in the figure below in green. (Then each point in S is the center of a right-

side-up triangle in T .) Each hexagonal tile in S induces a large hexagonal tile in T containing

it.

25



25th ELMO 2023 Shortlisted Problems

In T , assign each unit equilateral triangle (with green vertices) a charge of +1 if it is right-

side-up and a charge of −1 if it is upside-down.

We may check that the entire grid T has total charge n+ 1. Each point in S corresponds to

a right-side-up triangle in T , so the union of all hexagonal tiles contains all positively-charged

triangles in T (but not necessarily all negatively-charged triangles). Thus the union of the

hexagonal tiles has total charge at least n+ 1.

But we may also check that each hexagonal tile in T has total charge 1, so at least n+1 tiles

are needed.
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C8. Let n ≥ 3 be a fixed integer, and let α be a fixed positive real number. There are

n numbers written around a circle such that there is exactly one 1 and the rest are 0’s. An

operation consists of picking a number a in the circle, subtracting some positive real x ≤ a from

it, and adding αx to each of its neighbors.

Find all pairs (n, α) such that all the numbers in the circle can be made equal after a finite

number of operations.

(Anthony Wang)

Below is the author’s solution, unedited.

The answer is all (n, α) except when α = 1
2 sec

(
τk
n

)
for some integer k, where τ denotes the

ratio of a circle’s circumference to its radius.

Call the numbers a1, a2, . . . , an in counterclockwise order.

First, we show that such (n, α) cannot work. To do this, note that if ζ = eτik/n, then, ζ ̸= 1,

and

αz2 − z + α = α

(
z2 − 2 cos

(
τk

n

)
+ 1

)
= α(z − ζ)(z − ζ−1).

Therefore, the sum

Z :=
n∑

k=1

ζkak,

is invariant under the operations. But this sum starts nonzero and must be zero if all the

numbers in the circle are equal, contradiction.

Now we show that all other such (n, α) work. The general idea is to first make the ai roughly

uniform and then smooth out the differences.

We present one possible way to do this, using the following two claims:

Claim 1. Let ε > 0 be fixed. Let S = a1+a2+ · · ·+an. We can make the numbers around

the circle satisfy ∣∣∣∣aiS − 1

n

∣∣∣∣ < ε,

for all i = 1, 2, . . . , n in finitely many moves.

Proof. WLOG assume an is the one that starts at 1 (so the rest start at 0).

The procedure is simple: apply the operation to every number in the circle at the same time,

where we pick x = ai on each ai.

Using indices modulo n, the numbers on the board evolve as follows

· · · a−3 a−2 a−1 a0 a1 a2 a3 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 α 0 α 0 0 · · ·
· · · 0 α2 0 2α2 0 α2 0 · · ·
· · · α3 0 3α3 0 3α3 0 α3 · · ·

After each number has undergone N operations, we can prove

ai = αN
∑

n|2k−N−i

(
N

k

)
,

by induction, where
(
N
m

)
is zero if m < 0 or m > N . Notably,
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• if n is odd, then each number around the circle is αN times the sum of every nth binomial

coefficient with upper term N .

• if n is even, then every other number is zero, and the rest are αN times the sum of every

(n/2)th binomial coefficient with upper term N .

We claim that for any fixed integers d and i,

1

2N

∑
d|k−i

(
N

k

)
=

1

d
+ o(1),

as N → ∞. Indeed by Root of Unity Filter, we have∑
d|k−i

(
N

k

)
=

1

d

∑
ζd=1

ζ−i(1 + ζ)N .

But for ζ = 1, the summand is 2N , and for each ζd = 1 with ζ ̸= 1, we have |1 + ζ| < 2 by the

Triangle Inequality. Thus, ∑
d|k−i

(
N

k

)
=

1

d

(
2N + (N − 1)O(cN )

)
,

for some c < 2, from which the conclusion follows.

Using this claim, the conclusion follows for odd n by taking sufficiently large N . Furthermore,

if n is even, then every other number can be arbitrarily close to 2S
n , so (without updating the

value of S) we can make each number arbitrarily close to 4αS
n(2α+1) by subtracting 2S

n(2α+1) from

each. The conclusion follows.

Claim 2. If α = 2 or α ̸= 1
2 sec

(
τk
n

)
for any integer k, then we can always make all the

numbers equal in finitely many operations if subtracting any real x is allowed.

Proof. Write 1
α = t+ 1

t for some complex t ̸= 0. By assumption, tn ̸= 1. Scale so that an = α

and a1 = a2 = · · · = 0, and take indices modulo n. It suffices to find real b1, b2, . . . , bn−1, bn
such that

α(bn + b2)− b1 = α(b1 + b3)− b2 = · · · = α(bn−1 + b1)− bn + α,

because then we can simply apply the operation to ai with x = bi for each i. Rewrite the above

as,

bn + b2 −
(
t+

1

t

)
b1 = b1 + b2 −

(
t+

1

t

)
b2 = · · · = bn−1 + b1 −

(
t+

1

t

)
bn + 1.

If we let ci = bi−1 − tbi, then

c1 −
1

t
c2 = c2 −

1

t
c3 = · · · = cn − 1

t
c1 + 1.

Suppose this common value is k. We take two cases:

• Case 1: if t = 1, then

c1 − c2 = c2 − c3 = · · · = cn − c1 + 1 = k,

so

0 = (c1 − c2) + (c2 − c3) + · · ·+ (cn − c1) = nk − 1,
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i.e. k = 1/n. From here, we can assign

ci = − i

n
+

n+ 1

2n
,

and it will satisfy all the conditions along with c1 + c2 + · · · + cn = 0. Finally, we can

extract real bi according to bi = ci+1 + ci+2 + · · ·+ cn.

• Case 2: if t ̸= 1, we claim that we can just pick k = 0. Indeed, we simply need to satisfy,

cn − 1
t c1 + 1, and 0 = ci − 1

t ci+1 for each i = 1, 2, . . . , n− 1.

For the latter, we set, ci = C · ti for all i and some constant C. From which the latter

implies C = 1
tn−1 which is well defined since tn ̸= 1. Thus, we can assign

ci =
ti

tn − 1
,

and extract bi according to

bi = − tn−ic1 + tn−i+1c2 + · · ·+ tn−1ci + ci+1 + tci+2 + · · ·+ tn−i−1cn
tn − 1

which can be checked to satisfy all conditions1.

Finally, if t is real, then the bi are real. Otherwise, |t| = 1 since t+ 1
t = 1

α is real, so t = 1
t ,

and ci =
tn−i

1−tn = −cn−i. It follows that

bi =
ticn−1 + ti−1cn−2 + · · ·+ tcn−i + tnecn−i−1 + tn−1cn−i−2 + · · ·+ ti+1c0

1− tn

where c0 = 1
tn−1 . But ticn−1 = tn−1ci, t

i−1cn−2 = tn−2ci−1, and so on, so bi is real, as

desired.

We are done.

To finish, let A be the smallest value attained by a number around the circle in the procedure

described in Claim 2. Then by repeatedly applying the claim, if α = 2 or α ̸= 2 sec
(
τk
n

)
for

any integer k, we can turn any sequence of reals x1, x2, . . . , xn around the circle to all the same

number in finitely many moves such that the numbers around the circle are never less than

(x1 + x2 + · · ·+ xn)A. Note that A only depends on n.

Furthermore, if the numbers around the circle are instead λ+x1, λ+x2, . . . , λ+xn, the same

procedure allows us to make all the numbers the same such that the numbers around the circle

are never less than λ+ (x1 + x2 + · · ·+ xn)A.

But by Claim 1, if we scale so that the sum of the numbers around the circle is 1 and we

set λ = 1
n , we can ensure |x1 + x2 + · · · + xn| < nε for any ε > 0. Picking ε < 1

n|A| , we have

λ+ (x1 + x2 + · · ·+ xn)A > 0, so it follows that we can keep all the numbers around the circle

positive, as desired. ■

Remark. The procedure used in the proof of Claim 1 can be seen as a Markov Chain with half

chance of moving to each neighbor. Then, the conclusion is a consequence of the Fundamental

Limit Theorem for regular Markov Chains. Although this is not elementary, the general intuition

that it just has to become nearly uniform if you spam the operation enough should be.

Additionally, there are likely many ways to prove this claim, but we have selected this proof as

the most obvious one, although not necessarily the simplest one.

1This is motivated by first setting bi = ci+1 + tci+2 + · · ·+ tn−i−1cn + tn−ibn for each i, and then solving for bn
in bn = c1 + tb1.
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Remark. The t ̸= 1 case of Claim 2 is equivalent to showing that a linear transformation is non-

singular, or equivalently that (αx2 − x + α, xn − 1) is the whole ring R[x] (which is true because

R[x] is a PID and the two share no roots).

Indeed, we can prove the case very easily by noting that if a(x) and b(x) are polynomials such

that deg b < n and,

a(x)(xn − 1) + b(x)(αx2 − x+ α) + 1 = 0,

then the bi such that b(x) = bn + bn−1x+ · · ·+ b1x
n−1, suffice.

We decided against putting this proof in the solution since the one presented seems more ele-

mentary and more natural, although the above proof is certainly more beautiful.

30



25th ELMO 2023 Shortlisted Problems

G1. Let ABCDE be a regular pentagon. Let P be a variable point on the interior of segment

AB such that PA ̸= PB. The circumcircles of △PAE and △PBC meet again at Q. Let R be

the circumcenter of △DPQ. Show that as P varies, R lies on a fixed line.

(Karthik Vedula)

Let L be the point opposite D on (ABCDE), and let X = EA ∩BC. Note D, X, L are all

collinear along the perpendicular bisector of AB.

D

E

A B

C

P

Q

X

L

By the radical axis theorem on (ABCDE), (PAEQ), (PBCQ), point X lies on line PQ.

Then by power of a point, XD ·XL = XP ·DQ, so DLPQ is cyclic.

It follows that R always lies on the perpendicular bisector of DL.
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G2. Let ABC be an acute scalene triangle with orthocenter H. Line BH intersects AC at

E and line CH intersects AB at F . Let X be the foot of the perpendicular from H to the

line through A parallel to EF . Point B1 lies on line XF such that BB1 is parallel to AC, and

point C1 lies on line XE such that CC1 is parallel to AB. Prove that points B, C, B1, C1 are

concyclic.

(Luke Robitaille)

We present a few solutions.

First solution (mine) Let M be the midpoint of BC and let A′ = BB1 ∩CC1 so that ABA′C

is a parallelogram.

A

B CM

E

F

A′

H

X

B1

C1

Since AEFX is an isosceles trapezoid and ME = MF ,

∡B1FM = ∡XFM = ∡MEA = ∡ECM = ∡B1BM,

so B1 ∈ (BMF ). Similarly C1 ∈ (CME).

But since AB · AF = AC · AE, line AM is the radical axis of (BMF ) and (CME). In

particular, A′ lies on this radical axis, so A′B ·A′B1 = A′C ·A′C1 as needed.

Second solution (author) Let A′ = BB1 ∩ CC1 so ABA′C is a parallelogram. Since A′H ⊥
EF , we have X, H, A′ collinear. But

∡FXH = ∡FEH = ∡FCB = ∡HA′B,

implying B1X = B1A
′. Similarly C1X = C1A

′, so B1C1 ⊥ XHA′.

This means BC and B1C1 are antiparallel in ∠A′, so BB1CC1 is indeed cyclic.

Third solution (author) Let M be the midpoint of BC and let A′ = BB1 ∩ CC1 so that

ABA′C is a parallelogram.

Let ℓ be the perpendicular bisector of EF . Let B2 is the reflection of B1 in ℓ and let M ′ ∈ ℓ

be the midpoint of B1B2. Since XF and AE are reflections in ℓ, we know B2 lies on AC. If

M ̸= M ′, this implies ℓ = MM ′ ∥ AC, which is absurd. Hence M is the midpoint of B1B2, i.e.

B1M ⊥ ℓ. Similarly C1M ⊥ ℓ.

Then B1C1 ∥ EF , implying BC and B1C1 are antiparallel in ∠A′, which gives the desired.
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G3. Two triangles intersect to form seven finite disjoint regions, six of which are triangles

with area 1. The last region is a hexagon with area A. Compute the minimum possible value

of A.

(Karthik Vedula)

The minimum value of A is 6, achieved by taking two equilteral triangles from the vertices of

a regular hexagon. Now we show A ≥ 6.

Consider the convex hull of the two triangles, shown below, let a, b, c, d, e, f denote the

areas of the “ears” as shown below.

1

1 1

1

1
1

a

c

e

b

d

f

It is easy to verify the following statement:

Claim. In a quadrilateral ABCD with E = AC ∩BD, we have

Area(△EAB) ·Area(△ECD) = Area(△EBC) ·Area(△EDA).

From the claim, we deduce that the area of the red triangle highlighted in the above diagram

is

Area(red triangle) =
(b+ 1)(f + 1)

a
≥ 2

√
b · 2

√
f

a
=

4
√
bf

a
.

We may similarly determine the areas of the remaining five analgoous red triangles.

We may check that the sum of areas of the six red triangles is simply 3A+ 6, so we have

3A+ 6 =
∑
cyc

Area(red triangle) =
∑
cyc

4
√
bf

a
≥ 24,

which gives the desired.

Remark. There are easier solutions involving taking an affine transformation sending one of the

triangles to an equilateral triangle.
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G4. Let D be a point on segment PQ. Let ω be a fixed circle passing through D, and let A

be a variable point on ω. Let X be the intersection of the tangent to the circumcircle of △ADP

at P and the tangent to the circumcircle of △ADQ at Q. Show that as A varies, X lies on a

fixed line.

(Elliott Liu, Anthony Wang)

Note that

∡PXQ = ∡XPQ+ ∡PQX = ∡PAD + ∡DAQ = ∡PAQ,

so APXQ is cyclic. Since ∡XPQ = ∡PAD and ∡PQX = ∡DAQ, lines AD and AX are

isogonal in ∠PAQ.

A

P QD

X

Thus if X ′ is the reflection of X over the perpendicular bisector of PQ, then X ′ lies on (APQ)

and satisfies DA ·DX ′ = DP ·DQ. Thus X ′ is the inverse of A about a negative inversion at

D with radius
√
DP ·DQ.

Since A moves along a circle, X ′ moves along a circle, and so does X.
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G5. Let ABC be an acute triangle with circumcircle ω. Let P be a variable point on the

arc BC of ω not containing A. Squares BPDE and PCFG are constructed such that A, D,

E lie on the same side of line BP and A, F , G lie on the same side of line CP . Let H be the

intersection of lines DE and FG. Show that as P varies, H lies on a fixed circle.

(Karthik Vedula)

Construct square BCXY such that A, X, Y lie on the same side of BC. Let the tangents to

(ABC) at B and C intersect at T , and let U = XY ∩BT and V = XY ∩ CT .

A

B C

P

D

E
F

G

T

XYU V

H

Claim. U lies on DE.

Proof. Note △BY E ∼= △BCP by rotation about B, so

∡Y UB = ∡CBT = ∡CPB = ∡Y EB,

implying UY EB is cyclic. Similarly UXDB is cyclic.

As △BDE ∼ △BXY , point B is the Miquel point of DEYX. The concyclicities then imply

U = DE ∩XY .

Now since BC ∥ UV , PB ∥ HU , PC ∥ HV , and T = BU ∩ CV , we have that △PBC and

△HUV are homothetic at T . The homothety Ψ at T sending BC to UV is fixed as P varies,

so H = Ψ(P ) lies on Ψ((ABC)).
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G6. Let ABCDEF be a convex cyclic hexagon such that quadrilateral ABDF is a square,

and the incenter of △ACE lines on BF . Diagonal CE intersects diagonals BD and DF at

points P and Q, respectively. Prove that the circumcircle of △DPQ is tangent to BF .

(Elliott Liu)

We present several solutions.

First solution (mine) Let O be the circumcenter, and let L ∈ AI be the midpoint of arc CDE

on the circumcircle.

A

C E

F

B

D

I

Q P

X

Y

L

O

The key claim is this:

Claim. ∠AIP = ∠AIQ = 135◦.

Proof. Construct P ′ and Q′ on DF and DB so that ∠AIP ′ = ∠AIQ′. We will show lines CE

and P ′Q′ coincide. To do so, it will suffice to check that (i) OL ⊥ P ′Q′ and (ii) the distance

from I to P ′Q′ is the inradius of △ACE.

(i) Let X = AB∩IP ′ and Y = AF ∩IQ′. Then ∠XIQ′ = 90◦, so BXIQ′ is cyclic, and since

BI bisects ∠ABD, we have IX = IQ′. Since ∠AIX = 45◦ = ∠IBX, line AI is tangent

to (BXIQ′), so we have XQ′ ∥ AI. Similarly IY = IP ′ and Y P ′ ∥ AI. It follows that

P ′Q′XY is an isosceles trapezoid with bases parallel to AI.

Moreover since ∠XIY = 90◦ = ∠XAY , we have AXIY cyclic. Since ∠AXY = ∠AIY =

45◦, we have XY ∥ BF . Thus ∡(P ′Q′, AI) = ∡(AI,XY ).

∡(OL,P ′Q′) = ∡(OL,AI) + ∡(AI, P ′Q′)

= ∡(AI,OA) + ∡(XY ,AI)

= ∡(XY ,OA) = 90◦.

(ii) Since XY ∥ BF , the reflection I ′ of I over O lies on (AXIY ). Let AO reintersect (AXIY )

at T .
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Since XY contains the center of (AXIY ), we have

OI2 = OI ·OI ′ = OA ·OT = OA · (OA− 2 dist(O,XY )),

so dist(O,XY ) equals the inradius of △ABC. But we already know dist(I, P ′Q′) =

dist(O,XY ).

This proves the claim.

Since ∠PDQ = ∠PIQ = 90◦, we have I ∈ (DPQ). But ∠BIQ = 45◦ = ∠XY I = ∠IPQ, so

BF is tangent to (DPIQ), as desired.

Second solution by reflections (Pitchayut Saengrungkongka, unedited) Let Ω be the cir-

cumcircle of ABCDEF . Extend AI to meet Ω again at M , and reflect I over MB and MF to

obtain points B1 and F1, respectively.

Claim 1. M,D,B1, F1 are colinear.

Proof. We have ∠IMF1 = 2∠IMF = 2∠AMF = 90◦. Similarly, ∠IMB1 = 90◦. Moreover,

∠IMD = ∠AMD = 90◦. Thus, M,D,B1, F1 all lie on a line perpendicular to IM .

Claim 2. C, I, E,B1, F1 are concyclic on ω.

Proof. By Fact 5, MC = MI = ME. Moreover, since △IB1F1 is right isosceles with IM being

the altitude, we must have MI = MB1 = MF1, done.

Claim 3. B,B1, I,D are concyclic.

Proof. Follows from ∠IB1D = 45◦ = ∠DBI.

Claim 4. I, P,B1 are colinear. (Similarly, I,Q, F1 are colinear.)

Proof. By radical center theorem on ⊙(IBB1D), Ω ≡ ⊙(BMCE), and ω ≡ ⊙(IB1CE), lines

IB1, BM , CE are concurrent. This point must be P .

Thus, ∠PIQ = ∠B1IF1 = 90◦, implying that I ∈ ⊙(PDQ). To finish the problem, just

notice that

∠BIP = ∠BB1I = ∠BDI = ∠PDI.

Third solution by inversion (Maxim Li, unedited) Let Ω be the circumcircle, let I be the

incenter of ACE, and let AI,CI,EI meet Ω again at MA,MC ,ME , respectively. Let DI meet

Ω at T , and let T ′ lie on Ω with TT ′ ∥ BF .

Consider the inversion through I that sends Ω to itself. Then P ∗ is the intersection of (FIT )

and (IMCME), and Q∗ is the intersection of (BIT ) and (IMCME). I claim that P ∗, Q∗, T lie

on a line parallel to BF , which would finish the problem.

First note that TMA ∥ AD, so ∠MATT
′ = 90. Thus, MAT

′ is a diameter of Ω, and since I

is the orthocenter of MAMCME , this means (IMCME) is the reflection of Ω over the midpoint

of IT ′.

Now let TT ′ meet (FIT ) again at P1. It suffices to show P1 lies on (IMCME), since that

would mean P1 = P ∗. But now note that ∠P1IF = ∠TFI = ∠T ′BI since P1TIF is an isosceles

trapezoid. Thus, P1I ∥ T ′B, so P1T
′BI is a parallelogram. In particular, this means P1 is the

reflection of B over the midpoint of IT ′, and so lies on (IMCME), so we are done.
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G7. Let E be an ellipse with foci F1 and F2, and let P be a point on E . Suppose lines PF1 and

PF2 intersect E again at distinct points A and B, and the tangents to E at A and B intersect

at point Q. Show that the midpoint of PQ lies on the circumcircle of △PF1F2.

(Karthik Vedula)

We present two solution paths.

Elementary solution (Espen Slettnes) Let d = PF1+PF2 = AF1+AF2 = BF1+BF2. Then

△PAF1 and △PBF2 have semiperimeter d, so they share a P -excircle Ω.

P

A

B

Q

F1 F2

R

X

Y

S

Let Ω touch PA and PB at X and Y , so PX = PY = d. Let R and S be the reflections of

P over F1 and F2, so PR+ PS = 2d.

Then △QXR
+∼= △QY S, so PRQS is cyclic, are we are done by homothety at P .

Projective approaches (Eric Shen, Max Lu) Let M be the midpoint of PQ, let O be the

center of E , let P ′ be the antipode of P , and let P ∗ lie on E so that PP ∗ ∥ F1F2.

P

A

B

Q

F1 F2

M

Claim 1. PM bisects ∠F1PF2.
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First proof by Pitot. By converse Pitot, {PF1, PF2, AF2, BF1} has an excircle. Since QA and

QB bisect ∠F1AF2 and ∠F1BF2, the excircle has center Q, so PQ bisects ∠F1PF2 as needed.

Second proof by harmonic bundle. It is known that the tangent to E at P bisects ∠F1PF2. But

since −1 = P (PQ;AB), so does PQ.

Third proof by DDIT. By DDIT from P to E , we have (PP , PP ), (PA,PB), (PQ,PQ) are

pairs of an involution. Since PP bisects ∠F1PF2, so does PQ.

Claim 2. MF1 = MF2.

First proof by harmonic bundle. Note

−1 = (F1F2;O∞F1F2)
P
= (AB;P ′P ∗)E ,

so Q, P ′, P ∗ are collinear, i.e. QP ′ ⊥ F1F2. Then MO ⊥ F1F2 by homothety at P .

Second proof by DIT. By DIT from F1F2 to PPAB, we have (F1, F2), (E ∩ F1F2, E ∩ F1F2),

(PP ∩ F1F2, AB ∩ F1F2), are pairs of an involution. This involution must be reflection about

the center of E , so P ∗ P∗, AB, F1F2 concur, implying −1 = (AB;P ∗P ′). Thus P ∗, P ′, Q are

collinear, and we are done by homothety at P .

These two claims together are sufficient.

Remark. Claim 2 may be proven by taking an affine transformation sending E to a circle, and

proceeding by a method of choice, e.g. complex numbers.
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G8. Similar quadrilaterals ABCD ∼ A1B1C1D1 ∼ A2B2C2D2 lie in the plane such that

points A, A1, B2, B are collinear, points B, B1, C2, C are collinear, points C, C1, D2, D

are collinear, and points D, D1, A2, A are collinear. Prove that the intersections AC ∩ BD,

A1C1 ∩B1D1, and A2C2 ∩B2D2 are collinear.

A

B

C

D

A1

B1

C1

D1A2

B2

C2

D2

(Holden Mui)

Let X be the center of spiral similarity between ABCD and A1B1C1D1, and let Y be the

center of spiral similarity between ABCD and A2B2C2D2. Let θ := ∡XAB = ∡XBC =

∡XCD = ∡XDA and θ′ := ∡Y BA = ∡Y CB = ∡Y DC = ∡Y AD.

Claim 1. θ = θ′; i.e. X and Y are isogonal conjugates.

Proof. Assume for contradiction θ < θ′ (without loss of generality). Then by the law of sines

in △PDA and △QAB, we have

PD

PA
=

sin(∠A− θ)

sin θ
>

sin(∠A− θ′)

sin θ′
=

QB

QA
.

Multiplying cyclically gives

1 =
∏
cyc

PD

PA
>

∏
cyc

QB

QA
= 1,

contradiction.

A

B

C

D

X

Y

M

N
R
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Claim 2. ABCD is cyclic.

Proof. Note

∡AXD = ∡XAD + ∡ADX = ∡XAD + ∡BAX = ∡BAD

and similarly ∡BXC = ∡BCD.

Since X has an isogonal conjugate,

∡BAD = ∡AXD = ∡BXC = ∡BCD.

Claim 3. ABCD is harmonic.

Proof. Observe that

△AXD ∼ △AY B =⇒ AY

AX
=

AB

AD

△BXA ∼ △BY C =⇒ CY

AX
=

BC

AB

△CXB ∼ △CY D =⇒ CY

CX
=

CD

BC

△DXC ∼ △DY A =⇒ AY

CX
=

AD

BC
.

Hence

1 =
AY

AX
· CX

AY
· CY

CX
· AX
CY

=
AB

AD
· BC

AD
· CD

BC
· AB
BC

,

implying AB · CD = AD ·BC.

Now let R = AC ∩BD, R1 = A1C1 ∩B1D1, R2 = A2C2 ∩B2D2. Let M be the midpoint of

AC and N the midpoint of BD.

Claim 4. R, X, Y , M , N are concyclic.

Proof. Since ∡ANB = ∡ADC = ∡AXB, we have X ∈ (ANB), and similarly X ∈ (BMC).

Thus

∡XNR = ∡XAB = ∡XBC = ∡XMR

implies X ∈ (RMN), and similarly Y ∈ (RMN).

Finally

∡XRY = ∡XKY = ∡XKA+ ∡AKY = ∡XBA+ ∡ADY = −2θ,

so

∡R1RR2 = ∡R1RX + ∡XRY + ∡Y RR2 = θ + (−2θ) + θ = 0◦,

as desired.
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N1. Let m be a positive integer. Find all polynomials P (x) with integer coefficients such

that for every integer n, there exists an integer k such that P (k) = nm.

(Raymond Feng)

The answers are P (x) ≡ (x+a)d and P (x) ≡ (−x+a)d, where d | n. These work, so we show

they are the only solutions.

There exists k0 so that P (k0) = 0m. Shift P so that k0 7→ 0, so P (0) = 0, implying x | P (x)

for all x.

For each prime p, there is some kp with P (kp) = pm. Since kp | P (kp) = pm, we find that

kp ∈ {±1,±p, . . . ,±pm}. By Pigeonhole, there is some 0 ≤ r ≤ m such that either kp = pr for

infinitely many p or kp = −pr for infinitely many p.

In the former case, we must have P (x) ≡ xm/r, and in the latter case we must have P (x) ≡
(−x)m/r.
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N2. Determine the greatest positive integer n for which there exists a sequence of distinct

positive integers s1, s2, . . ., sn satisfying

ss21 = ss32 = · · · = ssnn−1.

(Holden Mui)

The answer is n = 5, achieved by

2562 = 216 = 164 = 48.

Now we show n = 5 is maximal.

Evidently there must be a non-perfect power a such that s1, . . . , sn−1 are all powers of a.

Let s2 = am and s3 = an, so

s4 =
man

n
.

Since s4 is a power of a, we must have n = mak for some nonzero integer k. This gives

s5 =
amak

ak − k
m

,

so ak − k
m is a power of a.

First case: If k > 0, then

ak − k ≤ ak − k

m
≤ ak−1,

implying (a, k) = (2, 1) or (a, k) = (2, 2). In both cases, m = 1, and we obtain the two sequences

4, 2, 4, 2, 4, . . . (which fails distinctness) and 256, 2, 16, 4, 8, which terminates after five terms.

Second case: Assume k < 0. We may find

s1 = amamak−m
= ana

(−k)+n−na−k

.

Since the exponent must be at least 1,

n ≥ aca
−k−(−k)−n ≥ 2n2

−k−(−k)−n ≥ 2n−1,

with equality only when a = 2, k = −1, and n = 1 or n = 2. We obtain the two sequences 2, 2,

2, 2, 2, . . . and 2, 4, 2, 4, 2, . . ., which fail.
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N3. Let a and b be positive integers and let k ≤ b be a nonnegative integer. A lemonade

stand owns n ≥ k cups, of which k are initially full and n−k are initially empty. The lemonade

stand also has a filling machine and an emptying machine, which operate according to the

following rules:

• If at any moment, a completely empty cups are available, the filling machine spends the

next a minutes filling those a cups simultaneously and doing nothing else.

• If at any moment, b completely full cups are available, the emptying machine spends the

next b minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying

machine work without pausing. In terms of a, b, and k, what is the least possible value of n?

(Raymond Feng)

Let d = gcd(a, b). The answer is

2(a+ b− d) + (k mod d).

We view the problem through two models:

• the discrete model where cups are filled instantly at the end of each a-minute period, and

cups are emptied instantly at the end of each b-minute period; and

• the continuous model, where cups are filled at a constant rate during each a-minute period,

and cups are emptied at a constant rate during each b-minute period.

We begin by assuming d = 1.

Lower bound for d = 1: Assume that at some time, say t = 0, both the filling machine and

the emptying machine are starting their next cycle. Suppose that c cups are fill at t = 0.

Using the discrete model, it suffices to consider when t is a multiple of a or b.

• At t = ka, the number of full cups is c+ (ka mod b), whose maximum value is c+ b− 1.

For the machines to continue working without pausing, we must have n ≥ (c+ b− 1) + a.

• At t = ℓb, the number of full cups is c − (ℓb mod a), whose minimum value is c − a + 1.

For the machines to continue workign without pausing, we must have 0 ≤ (c− a+ 1)− b.

Thus n ≥ 2(a+ b− 1).

Upper bound for d = 1: Assume n = 2(a+ b− 1), and consider the continuous model. Let

t be the time and L be the total amount of liquid in the cups.

• When t is an integer and L ≥ a + b − 1, there is at most a − 1 total liquid in (at most

a) cups being filled and thus at least b totally filled cups. Hence the emptying machine is

active and decreases L by 1 per minute.

• When t is an integer and L ≤ a+ b− 1, there is at most 1 total liquid in (at most b) cups

being emptied and thus at least a totally empty cups. Hence the filling machine is active

and increases L by 1 per minute.
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At any point in time when L ̸= a + b − 1, one of the machines is active and L gets 1 closer

to a + b − 1 every minute. When L = a + b − 1, both machines remain active indefinitely, L

remains constant.

Finish for d > 1: Using the discrete model, events only happen when t is a multiple of d,

and moreover the amount of total liquid is always k (mod d).

Hence there is a bijection x 7→ (x−(k mod d))/dmapping the current situation to the problem

where d = 1. This gives the desired bound of

2(a+ b− d) + (k mod d).
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N4. Let d(n) denote the number of positive divisors of n. The sequence a0, a1, a2, . . . is

defined as follows: a0 = 1, and for all integers n ≥ 1,

an = d(an−1) + d(d(an−2)) + · · ·+ d(d(. . . d(a0) . . .))︸ ︷︷ ︸
n times

.

Show that for all integers n ≥ 1, we have an ≤ 3n.

(Karthik Vedula)

We first prove:

Lemma

d(n) ≤
√
3n, with equality iff n = 12.

Proof. We proceed by strong induction. Assume n ≥ 2 and the lemma holds for integers less

than n. The result is clear if n is prime, so assume n composite. Let p be the largest prime

dividing n and let n = pe ·m, where p ∤ m.

If p ≥ 5, then since pe ≥ 5e ≥ (e+ 1)2,

d(n) = (e+ 1)d(m) ≤ (e+ 1)
√
3m ≤

√
3pem,

proving the inductive step.

Now our base case is numbers of the form n = 2x3y. But 2x ≥ 4
9(x+ 1)2 and 3y ≥ 3

4(y + 1)2,

implying

2x3y+1 ≥ (x+ 1)2(y + 1)2,

with equality iff (x, y) = (2, 1).

Claim. Let f(m) =
√
3m and let δ(n) be the largest number such that f δ(n)(n) ≥ 4. For

n ≥ 12 we have
δ(n)−1∑
k=1

fk(n) ≤
√
3 · f(n)− 2.

Proof. We proceed by strong induction. If f(n) < 12, then δ(n) ≤ 2, but f(n) ≤
√
3f(n) − 2,

proving the claim.

If f(n) ≥ 12, the inductive hypothesis gives

δ(n)−1∑
k=2

fk(n) ≤
√
3 · f2(n)− 2 ≤ (

√
3− 1)f(n)− 2,

proving the claim.

Then for n ≥ 26,

an =
n∑

k=1

dk(an−k) ≤

δ(n)−1∑
k=1

fk(an−1)

+ 5 + 3 + 2(n− 3)

≤ 2n+
√
3f(an−1) ≤ 2n+ 3

√
3(n− 1) ≤ 3n.

The rest is a finite case check.
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N5. An ordered pair (k, n) of positive integers is good if there exists an ordered quadruple

(a, b, c, d) of positive integers such that a3 + bk = c3 + dk and abcd = n. Prove that there exist

infinitely many positive integers n such that (2022, n) is not good but (2023, n) is good.

(Luke Robitaille)

First observe:

Claim 1. If ν7(n) = 1, then (2022, n) is not good.

Proof. Note a3, c3 ∈ {0, 1,−1} (mod 7) and b2022, d2022 ≡ {0, 1} (mod 7), with exactly one of

these equal to 0 mod 7. This is a clear contradiction to a3 + b2022 = c3 + d2022.

Claim 2. If (2023, n) is good, then (2023, nt4052) is good for every t.

Proof. If the quadruple (a, b, c, d) works, then (at2023, bt3, ct2023, dt3) works.

Therefore it suffices to find a quadruple (a, b, c, d) with a3+b2023 = c3+d2023 and ν7(abcd) = 1.

Select a = 7, c = 6, and b and d with 7 ∤ b, d and b ≡ d ≡ 1 (mod 127). It follows that

x =
d2023 − b2023

a3 − c3
∈ Z.

Finally the quadruple (ax674, bx, cx674, dx) works.

Remark. The key difficulty in construction said quadruple (a, b, c, d). The motivation is that for

any a, b, c, d, if we define x as we did above, then (ax674, bx, cx674, dx) is good. It will then suffice

to force x to be an integer.

47


	Problems
	Problem A1
	Problem A2
	Problem A3
	Problem A4
	Problem A5
	Problem A6
	Problem C1
	Problem C2
	Problem C3
	Problem C4
	Problem C5
	Problem C6
	Problem C7
	Problem C8
	Problem G1
	Problem G2
	Problem G3
	Problem G4
	Problem G5
	Problem G6
	Problem G7
	Problem G8
	Problem N1
	Problem N2
	Problem N3
	Problem N4
	Problem N5

	Solutions
	Solution A1
	Solution A2
	Solution A3
	Solution A4
	Solution A5
	Solution A6
	Solution C1
	Solution C2
	Solution C3
	Solution C5
	Solution C6
	Solution C7
	Solution C8
	Solution G1
	Solution G2
	Solution G3
	Solution G4
	Solution G5
	Solution G6
	Solution G7
	Solution G8
	Solution N1
	Solution N2
	Solution N3
	Solution N4
	Solution N5


