Problem 1. Let $n>1$ be an integer. The numbers $1, \ldots, n$ are written on a board. Aliceurill and Bobasaur take turns circling an uncircled number on the board, with Aliceurill going first. When the product of the circled numbers becomes a multiple of n, the game ends and the last player to have circled a number loses. For which values of n can Bobasaur guarantee victory?

Problem 2. Find all monic nonconstant polynomials P with integer coefficients for which there exist positive integers a and m such that for all positive integers $n \equiv a(\bmod m)$, $P(n)$ is nonzero, and

$$
2022 \cdot \frac{(n+1)^{n+1}-n^{n}}{P(n)}
$$

is an integer.

Problem 3. Let \mathcal{P} be a regular 2022-gon with area 1. Find a real number c such that, if points A and B are chosen independently and uniformly at random on the perimeter of \mathcal{P}, then the probability that $A B \geq c$ is $\frac{1}{2}$.

Problem 4. Let $A B C D E$ be a convex pentagon such that $\triangle A B E, \triangle B E C$, and $\triangle E D B$ are similar (with vertices in order). Lines $B E$ and $C D$ intersect at point T. Prove that line $A T$ is tangent to the circumcircle of $\triangle A C D$.

Problem 5. Let $n \geq 3$ be a positive integer. There are n^{3} users on a social media network called Everyone Likes Meeting Online (ELMO), and some pairs of these users are ELMObuddies. A set of at least three ELMO users forms an ELMOclub if and only if all pairs of members of the set are ELMObuddies. It is known that among every n users, some three form an ELMOclub. Prove that there is an ELMOclub with five members.

Problem 6. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers m and n,

$$
f(f(m)-n)+f(f(n)-m)=f(m+n) .
$$

