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Problems

A1. Let a, b, c be positive reals such that 1
a + 1

b + 1
c = 1. Show that

aabc+ bbca+ ccab ≥ 27(ab+ bc+ ca).

(Milan Haiman)

A2. Find all functions f : Z → Z with the property that for any surjective function
g : Z→ Z, the function f + g is also surjective.

(Sean Li)

A3. Let n ≥ 3 be a fixed positive integer. Evan has a convex n-gon in the plane and
wishes to construct the centroid of its vertices. He has no standard ruler or compass, but
he does have a device with which he can dissect the segment between two given points
into m equal parts. For which m can Evan necessarily accomplish his task?

(Holden Mui and Carl Schildkraut)

A4. Find all nondecreasing functions f : R→ R such that for all real numbers x, y,

f(f(x)) + f(y) = f(x+ f(y)) + 1.

(Carl Schildkraut)

A5. Define the set of functional expressions to be the smallest set of expressions so that
the following properties hold:

• Any variable xi, or any fixed real number, is a functional expression.

• Given any functional expression V , the expression f(V ) is a functional expression,
and given any two functional expressions V,W , the expressions V +W and V ·W
are functional expressions.

A functional equation is an equation of the form V = 0 for any functional expression V ;
a function satisfies it if that equation holds for all choices of each xi in the real numbers.

(For example, the equation f(x1) + f(x2) + (−1)(x1 + x2) = 0 is a functional equation
satisfied by only the identity function, while the equation f(x1)+f(x2)+(−1)f(x1+x2) =
0 is a functional equation satisfied by infinitely many functions. The equation f( 1

1+x21
) = 0

is not a functional equation at all.)
Does there exist a functional equation satisfied by a exactly one function f , and the

function f satisfies f(R) = Z?

(Carl Schildkraut)
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C1. Let n ≥ 3 be fixed positive integer. Elmo is playing a game with his clone. Initially,
n ≥ 3 points are given on a circle. On a player’s turn, that player must draw a triangle
using three unused points as vertices, without creating any crossing edges. The first
player who cannot move loses. If Elmo’s clone goes first and players alternate turns,
which player wins for each n?

(Milan Haiman)

C2. Adithya and Bill are playing a game on a connected graph with n > 2 vertices and
m edges. First, Adithya labels two of the vertices A and B, so that A and B are distinct
and non-adjacent, and announces his choice to Bill. Then Adithya starts on vertex A
and Bill starts on B.

Now the game proceeds in a series of rounds in which both players move simultaneously.
In each round, Bill must move to an adjacent vertex, while Adithya may either move to
an adjacent vertex or stay at his current vertex. Adithya loses if he is ever on the same
vertex as Bill, and wins if he reaches B alone. Adithya cannot see where Bill is, but Bill
can see where Adithya is.

Given that Adithya has a winning strategy, what is the maximum possible value of m,
in terms of n?

(Steven Liu)

C3. In the game of Ring Mafia, there are 2019 counters arranged in a circle, 673 of
these which are mafia, and the remaining 1346 which are town. Two players, Tony and
Madeline, take turns with Tony going first. Tony does not know which counters are mafia
but Madeline does.

On Tony’s turn, he selects any subset of the counters (possibly the empty set) and
removes all counters in that set. On Madeline’s turn, she selects a town counter which
is adjacent to a mafia counter and removes it. (Whenever counters are removed, the
remaining counters are brought closer together without changing their order so that they
still form a circle.) The game ends when either all mafia counters have been removed, or
all town counters have been removed.

Is there a strategy for Tony that guarantees, no matter where the mafia counters are
placed and what Madeline does, that at least one town counter remains at the end of the
game?

(Andrew Gu)

C4. Let n ≥ 3 be a positive integer. In a game, n players sit in a circle in that order.
Initially, a deck of 3n cards labeled {1, . . . , 3n} is shuffled and distributed among the
players so that every player holds 3 cards in their hand. Then, every hour, each player
simultaneously gives the smallest card in their hand to their left neighbor, and the largest
card in their hand to their right neighbor. (Thus after each exchange, each player still
has exactly 3 cards.)

Prove that each player’s hand after the first n − 1 exchanges is their same as their
hand after the first 2n− 1 exchanges.

(Carl Schildkraut and Colin Tang)
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C5. Given a permutation of 1, 2, 3, . . . , n, with consecutive elements a, b, c (in that
order), we may perform either of the moves:

• If a is the median of a, b, and c, we may replace a, b, c with b, c, a (in that order).

• If c is the median of a, b, and c, we may replace a, b, c with c, a, b (in that order).

What is the least number of sets in a partition of all n! permutations, such that any two
permutations in the same set are obtainable from each other by a sequence of moves?

(Milan Haiman)

G1. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. Let BH
intersect AC at E, and let CH intersect AB at F . Let AH intersect Γ again at P 6= A.
Let PE intersect Γ again at Q 6= P . Prove that BQ bisects segment EF .

(Luke Robitaille)

G2. Snorlax is given three pairwise non-parallel lines `1, `2, `3 and a circle ω in the
plane. In addition to a normal straightedge, Snorlax has a special straightedge which
takes a line ` and a point P and constructs a new line `′ passing through P parallel to `.
Determine if it is always possible for Snorlax to construct a triangle XY Z such that the
sides of 4XY Z are parallel to `1, `2, `3 in some order, and X,Y, Z each lie on ω.

(Vincent Huang)

G3. Let 4ABC be an acute triangle with incenter I and circumcenter O. The incircle
touches sides BC,CA, and AB at D,E, and F respectively, and A′ is the reflection of A
over O. The circumcircles of ABC and A′EF meet at G, and the circumcircles of AMG
and A′EF meet at a point H 6= G, where M is the midpoint of EF . Prove that if GH
and EF meet at T , then DT ⊥ EF .

(Ankit Bisain)

G4. Let triangle ABC have altitudes BE and CF which meet at H. The reflection
of A over BC is A′. The circumcircles of 4AA′E and 4AA′F meet the circumcircle of
4ABC at P 6= A and Q 6= A respectively. Lines BC and PQ meet at R. Prove that
EF ‖ HR.

(Daniel Hu)

G5. Given a triangle ABC for which ∠BAC 6= 90◦, let B1, C1 be variable points on
AB,AC, respectively. Let B2, C2 be the points on line BC such that a spiral similarity
centered at A maps B1C1 to C2B2. Denote the circumcircle of AB1C1 by ω. Show that if
B1B2 and C1C2 concur on ω at a point distinct from B1 and C1, then ω passes through
a fixed point other than A.

(Maxwell Jiang)
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G6. Let ABC be an acute scalene triangle and let P be a point in the plane. For
any point Q 6= A,B,C, define TA to be the unique point such that 4TABP ∼ 4TAQC
and 4TABP,4TAQC are oriented in the same direction (clockwise or counterclockwise).
Similarly define TB, TC .

(a) Find all P such that there exists a point Q with TA, TB, TC all lying on the
circumcircle of 4ABC. Call such a pair (P,Q) a tasty pair with respect to 4ABC.

(b) Keeping the notations from (a), determine if there exists a tasty pair which is also
tasty with respect to 4TATBTC .

(Vincent Huang)

N1. Let P be a polynomial with integer coefficients so that P (0) = 1. Let x0 = 0, and
let xi+1 = P (xi) for all i ≥ 0. Show that there are infinitely many positive integers n so
that gcd(xn, n+ 2019) = 1.

(Carl Schildkraut and Milan Haiman)

N2. Let f : Z>0 → Z>0 be a function. Prove that the following two conditions are
equivalent:

(i) f(m) + n divides f(n) +m for all positive integers m ≤ n;

(ii) f(m) + n divides f(n) +m for all positive integers m ≥ n.

(Carl Schildkraut)

N3. Let S be a nonempty set of integers so that, for any (not necessarily distinct)
integers a and b in S, ab+ 1 is also in S. Show that there are finitely many (possibly
zero) primes which do not divide any element of S.

(Carl Schildkraut)

N4. A positive integer b ≥ 2 and a sequence a0, a1, a2, . . . of base-b digits 0 ≤ ai < b
is given. It is known that a0 6= 0 and the sequence {ai} is eventually periodic but has
infinitely many nonzero terms. Let S be the set of positive integers n so that the base-b
number (a0a1 . . . an)b is divisible by n. Given that S is infinite, show that there are
infinitely many primes dividing at least one element of S.

(Carl Schildkraut and Holden Mui)

N5. Let m be a fixed even positive integer. Find all positive integers n for which there
exists a bijection f from {1, . . . , n} to itself such that for all x, y ∈ {1, . . . , n} with mx−y
divisible by n, we also have

(n+ 1) | f(x)m − f(y).

(Milan Haiman and Carl Schildkraut)
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Solutions
A1. Let a, b, c be positive reals such that 1

a + 1
b + 1

c = 1. Show that

aabc+ bbca+ ccab ≥ 27(ab+ bc+ ca).

(Milan Haiman)

We present two solutions.

First solution by Jensen (Ankan Bhattacharya) Applying the change of variable
(x, y, z) = ( 1a ,

1
b ,

1
c ), we wish to prove that

x1−1/x + y1−1/y + z1−1/z ≥ 27

whenever x, y, z > 0 and x+ y + z = 1.
We will prove that f(x) = x1−1/x is convex on R>0, which will establish the result. A

calculation shows that

f ′(x) = x−1/x
(
x−1 log x+ 1− x−1

)
f ′′(x) = x−1/x

(
x−3(log x− 1)2 + x−2

)
which is positive.

Second solution (Jirayus Jinapong) Dividing both sides by abc, we wish to show
aa−1 + bb−1 + cc−1 ≥ 27. In fact, we prove the following stronger claim.

Claim — We have aa−1bb−1cc−1 ≥ 729.

Proof. Note that a, b, c > 1. By weighted AM-GM, we have

2

a+ b+ c− 3
=
∑
cyc

a− 1

a+ b+ c− 3
· 1

a
≥
∏
cyc

(
1

a

) a−1
a+b+c−3

Therefore, we have

aa−1bb−1cc−1 ≥
(
a+ b+ c+ 3

2

)a+b+c−3
.

Since the given implies a+ b+ c ≥ 9
1/a+1/b+1/c = 9, we get the result.

8
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A2. Find all functions f : Z → Z with the property that for any surjective function
g : Z→ Z, the function f + g is also surjective.

(Sean Li)

Constant functions f work, so we prove that when f is nonconstant it is possible to
find surjective g such that f + g is never equal to zero.

Note that the problem remains the same if we replace the domains by a countable set
S = {s0, s1, . . . } with the order of the elements being irrelevant. So we will do so to ease
notation.

We consider two cases.

• First, suppose that f has the form

f(s0) = t0

f(s1) = t1
...

f(sn) = tn

f(sn+1) = c

f(sn+2) = c

f(sn+3) = c

...

where none of the ti’s equals zero. In other words, f is equal to some constant c
for cofinitely many values. Since f is nonconstant, n > 0.

Then it suffices to define g by letting g(s0) = −c, and then picking g(s1), g(s2),
. . . , g(sn) to be large positive integers exceeding max |ti|, and then picking g(sn+1),
. . . to be the remaining unchosen integers in some order.

• Otherwise, we claim the following algorithm works: we define g(sn) inductively by
letting it equal the smallest integer (in absolute value, say) which has not yet been
chosen, and is also not equal to −f(sn).

The resulting function f+g avoids zero by definition; we just need it to be surjective,
and this is true because for any constant c, there are infinitely many n for which
f(sn) 6= −c; so c will get chosen by the (2c+ 1)st such n.

9
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A3. Let n ≥ 3 be a fixed positive integer. Evan has a convex n-gon in the plane and
wishes to construct the centroid of its vertices. He has no standard ruler or compass, but
he does have a device with which he can dissect the segment between two given points
into m equal parts. For which m can Evan necessarily accomplish his task?

(Holden Mui and Carl Schildkraut)

The following solution was given by Ankan Bhattacharya. We ignore the hypothesis
that the n vertices are convex. The given task is easily seen to be equivalent to the
following one:

Evan writes the n vectors (n, 0, 0, . . . ), (0, n, 0, . . . ), . . . , (0, 0, . . . , n) on a
board. For any two vectors a and b on the board, Evan may write the vector
k
ma + `

mb for any nonnegative integers k, ` summing to m. The goal is to
write (1, . . . , 1).

We claim that the answer is that Evan can succeed if and only if m is divisible by 2
and every prime dividing n.

Proof of necessity: It is clear that m must be divisible by every prime factor p of n,
since otherwise entries on the board will always be zero modulo p.

Now suppose n is odd; we show 2 | m nonetheless. The initial given vectors are
permutations of

(1, 0, . . . , 0︸ ︷︷ ︸
n−1

) (mod 2).

The desired vector then is (1, . . . , 1) (mod 2). However, it is easy to see that no new
vectors (modulo 2) can be added. Hence if n is odd then 2 | m as well.

Proof of sufficiency: It is enough to prove that if n = 2p with p an odd prime, then
m = 2p is valid.

We say a achievable multiset S is one for which the elements are positive integers
with sum 2p and Evan can achieve the vector whose nonzero entries coincide with that
multiset. We start with S = {1, p − 1, 1, p − 1} as an achievable multiset. Thereafter,
note that the following operations preserve achievability:

(a) replace an even k with two copies of k
2 ,

(b) replace two different numbers k and ` of the same parity with two copies of k+`
2 ,

Note that every move decreases the sum of the squares (say), so consider an achievable
multiset S at a situation when no more moves are possible. It must be constant then (as
all numbers are odd and equal). Moreover all the entries are less than p. So we must
have S = {1, 1, . . . , 1} as needed.

10
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A4. Find all nondecreasing functions f : R→ R such that for all real numbers x, y,

f(f(x)) + f(y) = f(x+ f(y)) + 1.

(Carl Schildkraut)

Here is Ankan Bhattacharya’s solution.

Part I: answers. For each positive integer n and real 0 ≤ α < 1, the functions

f−n,α(x) = 1
nbnx+ αc+ 1 and f+n,α(x) = 1

ndnx− αe+ 1,

along with f0(x) = 1 and f∞(x) = x+ 1, are solutions (and they are all). The verification
that they are valid solutions is left to the curious reader.

Part II: substitution. For the converse direction, it will be more helpful to work
with the function g(x) = f(x)− 1, which is also nondecreasing.

Lemma

We have g(0) = 0, g(x+ 1) = g(x) + g(1), and

Q(x, y) : g(x+ g(y)) = g(x) + g(y).

Proof. The original functional equation reads

P (x, y) : g
(
g(x) + 1

)
+ g(y) = g

(
x+ g(y) + 1

)
.

• First of all, P (0, 0) gives g(0) = 0.

• Next,

P (x, 0) =⇒ g
(
g(x) + 1

)
= g(x+ 1),

P (0, y) =⇒ g(1) + g(y) = g
(
g(y) + 1

)
,

and in particular g(x+ 1) = g(x) + g(1). As a corollary, g is idempotent: g(g(x)) =
g(x).

This simplifies P (x, y) to the last part Q(x, y) of the claim.

Part III: analysis. We are done playing around with expressions and are ready to
do more serious analysis on g. If g(1) = 0 then clearly g(n) = 0 for every integer n so g
is zero. Hence suppose g(1) > 0.

Claim — If g is not the identity function, then g(1) = 1.

Proof. Write g(1) = c. Now note g(n) = cn for any positive integer n, and also g(cn) = cn
and g

(
c(n± 1)

)
= c(n± 1). Hence c(n± 1) never belong to the interval from n to cn,

which forces c = 1 upon taking n→∞.

We now denote by S = g(R) the image of g.

11
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Claim — S is closed under subtraction.

Proof. Note Q
(
x− g(y), y

)
gives g(x)− g(y) = g

(
x− g(y)

)
.

Thus we have two cases.

• If S is dense, then by Q(0, y) the set of fixed points of g is dense, so g is identity.

• If S is not dense, then S (being closed under subtraction) must be of the form 1
nZ

for some positive integer n. As g must be non-decreasing, it follows that g−1(0)
is a half-open interval of length 1

n containing 0, and the desired characterization
follows.

12



21st ELMO 2019 Shortlisted Problems

A5. Define the set of functional expressions to be the smallest set of expressions so that
the following properties hold:

• Any variable xi, or any fixed real number, is a functional expression.

• Given any functional expression V , the expression f(V ) is a functional expression,
and given any two functional expressions V,W , the expressions V +W and V ·W
are functional expressions.

A functional equation is an equation of the form V = 0 for any functional expression V ;
a function satisfies it if that equation holds for all choices of each xi in the real numbers.

(For example, the equation f(x1) + f(x2) + (−1)(x1 + x2) = 0 is a functional equation
satisfied by only the identity function, while the equation f(x1)+f(x2)+(−1)f(x1+x2) =
0 is a functional equation satisfied by infinitely many functions. The equation f( 1

1+x21
) = 0

is not a functional equation at all.)
Does there exist a functional equation satisfied by a exactly one function f , and the

function f satisfies f(R) = Z?

(Carl Schildkraut)

Yes, such a functional equation does exist. Here is Ankan Bhattacharya’s construction
(one of many).

We consider the following sequence.

Claim — The sequence

an =


0 n < 0,

m n = 2m− 2, m ∈ Z>0,

−m n = 2m− 1, m ∈ Z>0,

is the unique Z-indexed satisfying the five properties

• an = 0 for n < 0,

• a0 ∈ {0, 1},

• an+2 − 2an + an−2 = 0 for n ≥ 0,

• an − an−2 ∈ {±1} for n ≥ 0,

• an + an+1 ∈ {0, 1} for n ≥ 0.

Proof. Suppose a0 = 0. Then a2 = 2a0 − a−2 = 0, but a2 − a0 /∈ {−1, 1}, contradiction.
Thus a0 = 1. Now a−2 = 0 and a0 = 1, so by an easy induction a2n−2 = n for every
nonnegative integer n. Now note a2n−2 = n, a2n = n + 1, and a2n−2 + a2n−1 and
a2n−1 + a2n are both in {0, 1} for every n ≥ 0, so a2n−1 = −n for every n ≥ 0. The
end.

13
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Now we are ready to solve the problem. We claim that

0 = f
(
−x21 − (x1x2 − 1)2

)2
+
[(
f(−x21 − (x1x2 − 1)2 + 1)− 1

2

)2 − 1
4

]2
+
[
f(x21 + 2)− 2f(x21) + f(x21 − 2)

]2
+
[(
f(x21)− f(x21 − 2)

)2 − 1
]2

+
[(
f(x21) + f(x21 + 1)− 1

2

)2 − 1
4

]2
works. Unraveling the equation, we obtain the equivalent condition set

• f(s) = 0 for s < 0,

• f(s) ∈ {0, 1} for s < 1,

• f(s+ 2)− 2f(s) + f(s− 2) = 0 for s ≥ 0,

• f(s)− f(s− 2) ∈ {±1} for s ≥ 0,

• f(s) + f(s+ 1) ∈ {0, 1} for s ≥ 0.

This is equivalent to the sequence {f(n+ α)}n∈Z satisfying the hypothesis of the claim
for any 0 ≤ α < 1. This solves the problem.

Remark. It’s interesting how annoying the constraint about not allowing division is. With
division permitted, the much simpler construction

0 =
[
f((1 + x2)−1)− 1

]2
+ [f(y + 1)− f(y)− 1]

2

works nicely: the first term requires that f(t) = 1 for 0 < t ≤ 1 and the second one means
f(t+ 1) = f(t) + 1 for all t, ergo f is the ceiling function.

14
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C1. Let n ≥ 3 be fixed positive integer. Elmo is playing a game with his clone. Initially,
n ≥ 3 points are given on a circle. On a player’s turn, that player must draw a triangle
using three unused points as vertices, without creating any crossing edges. The first
player who cannot move loses. If Elmo’s clone goes first and players alternate turns,
which player wins for each n?

(Milan Haiman)

The first player (Elmo’s clone) always wins. Indeed it obviously wins for n ≤ 5.
For n ≥ 6, the strategy is to start by picking an isosceles triangle whose base cuts off

either 0 or 1 points (according to whether n is odd or even, respectively).

Then do strategy stealing: each time the second player moves, the first player copies it.

15
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C2. Adithya and Bill are playing a game on a connected graph with n > 2 vertices and
m edges. First, Adithya labels two of the vertices A and B, so that A and B are distinct
and non-adjacent, and announces his choice to Bill. Then Adithya starts on vertex A
and Bill starts on B.

Now the game proceeds in a series of rounds in which both players move simultaneously.
In each round, Bill must move to an adjacent vertex, while Adithya may either move to
an adjacent vertex or stay at his current vertex. Adithya loses if he is ever on the same
vertex as Bill, and wins if he reaches B alone. Adithya cannot see where Bill is, but Bill
can see where Adithya is.

Given that Adithya has a winning strategy, what is the maximum possible value of m,
in terms of n?

(Steven Liu)

The answer is m =
(
n−1
2

)
+ 1. Here is the solution by Milan Haiman.

Construction: suppose G consists of an (n− 1)-clique, two of the vertices which are
labeled C and A, with one extra leaf attached to C, which we label B. Then, Adithya
wins by starting at A and following the sequence A→ A→ C → B.

Bound: The main lemma is the following.

Claim — If B is part of any triangle, then Adithya can’t guarantee victory.

Proof. Bill can move among those three vertices and arrive back at B after k moves, for
any k ≥ 2. Moreover Adithya takes at least two moves to reach B.

So if Adithya is to win, we must have

m ≤
((

n− 1

2

)
−
(
d

2

))
+ d

where d is the degree of B, and this implies the result.

16
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C3. In the game of Ring Mafia, there are 2019 counters arranged in a circle, 673 of
these which are mafia, and the remaining 1346 which are town. Two players, Tony and
Madeline, take turns with Tony going first. Tony does not know which counters are mafia
but Madeline does.

On Tony’s turn, he selects any subset of the counters (possibly the empty set) and
removes all counters in that set. On Madeline’s turn, she selects a town counter which
is adjacent to a mafia counter and removes it. (Whenever counters are removed, the
remaining counters are brought closer together without changing their order so that they
still form a circle.) The game ends when either all mafia counters have been removed, or
all town counters have been removed.

Is there a strategy for Tony that guarantees, no matter where the mafia counters are
placed and what Madeline does, that at least one town counter remains at the end of the
game?

(Andrew Gu)

The answer is no. The following solution is due to Carl Schildkraut.
In fact, suppose we group the counters into 2019 blocks initially into 673 consecutive

groups of 3 and it is declared publicly that there is exactly one Mafia token in each block.

T

M

T

M

T
T T M

T

M

T

T

T

M

T

T

M
TTT

M

M

T

T

Claim — At every step of the game, in every block with at least one token remaining,
any token in that block could be Mafia. In other words, Tony cannot gain any
information about any of the counters in a given block.

Proof. This is clearly true after any of Tony’s moves, since within each block Tony has
no information.

So we just have to verify it for Madeline. If the game is still ongoing, then there is
some block with at least two tokens remaining. So:

• If there are only two tokens left, then they play symmetric roles; Madeline removes
either one.

• If all three tokens remain, then since either the leftmost or rightmost counter could
be Mafia, Madeline simply removes the middle counter.

17
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This completes the proof.

Therefore, it is impossible for Tony to guarantee that at least one town counter remains
and no Mafia tokens remain, since any nonempty block could contain a Mafia token.

18
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C4. Let n ≥ 3 be a positive integer. In a game, n players sit in a circle in that order.
Initially, a deck of 3n cards labeled {1, . . . , 3n} is shuffled and distributed among the
players so that every player holds 3 cards in their hand. Then, every hour, each player
simultaneously gives the smallest card in their hand to their left neighbor, and the largest
card in their hand to their right neighbor. (Thus after each exchange, each player still
has exactly 3 cards.)

Prove that each player’s hand after the first n − 1 exchanges is their same as their
hand after the first 2n− 1 exchanges.

(Carl Schildkraut and Colin Tang)

For now, we focus only on the behavior of the cards in {1, . . . , n} and instead consider
a modified game in which each player

• keeps their minimum card,

• passes their median card one right,

• passes their maximum card two right.

This is the same game up to rotating the names of players.

Claim (Trail of tokens) — For each 1 ≤ r ≤ n, the card r stops moving after at
most r − 1 moves.

Proof. The trick is to treat the cards {1, . . . , r} as indistinguishable: we call such cards
blue tokens. We show all tokens stop moving after at most r − 1 time. The main trick is
the following:

Whenever a player receives a token for the first time, (possibly before any
moves, possibly more than one at once), we have them choose one of their
tokens to turn grey, and have it never move afterwards.

Assume some token is still blue after h hours. If it moved from player 0 to player d,
say (players numbered in order), then players 0, 1, . . . , d, each have a grey token. Thus
d + 1 ≤ r − 1, but the token advanced at least one player per hour, hence d ≥ h, so
h ≤ r − 2.

In other words, by time r − 1 all tokens are grey.

Remark. A similar proof shows that the card r travels a total distance at most r − 1 too,
by doing the same proof but without changing colors of tokens: if a token covers a total
distance d, then players 0, 1, . . . , d− 1 all have a token.

The condition that a player holds at most three tokens at once is not used at any point.

Back to main problem: Return to the original exchange rules. By the main claim,
after n− 1 hours all the cards {1, . . . , n} are always passed left; in particular, they are
in different hands, rotating. A similar claim holds for the large cards {2n+ 1, . . . , 3n}.
Thus the cards {n+ 1, . . . , 2n} are standing still. This implies the problem.

Remark. Despite how tempting it is to apply induction on r to try and prove the main
claim, it seems that using indistinguishable tokens makes things much simpler. Part of the
reason is because the same cards can meet twice: suppose some adjacent players have the
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hands
{1, 3, 6} {7, 8, 9} {4, 9001, 9002} {5, 9003, 9004} . . .

Note the cards 8 and 9 meet again just a few hours later.
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C5. Given a permutation of 1, 2, 3, . . . , n, with consecutive elements a, b, c (in that
order), we may perform either of the moves:

• If a is the median of a, b, and c, we may replace a, b, c with b, c, a (in that order).

• If c is the median of a, b, and c, we may replace a, b, c with c, a, b (in that order).

What is the least number of sets in a partition of all n! permutations, such that any two
permutations in the same set are obtainable from each other by a sequence of moves?

(Milan Haiman)

The number of equivalence classes turns out to be

n2 − 3n+ 4 = 2

[(
n− 1

2

)
+ 1

]
.

First we show that at least 2
(
n−1
2

)
+ 2 sets are required.

Define the disorder of a permutation to be the number of pairs (i, j) such that
1 ≤ i < j ≤ n but i occurs after j in the permutation. We will also refer to these pairs as
pairs that are out of order. We will refer to other such pairs with i occurring before j as
in order.

Note that disorder is invariant under moves, as the only pairs whose relative orders
change are the ones involved in the move. We can easily check that the number of pairs
out of order does not change.

Consider the pair (1, n). Notice that a move cannot change the relative order of
this pair, as neither 1 nor n can be the median of three elements of a permutation of
1, 2, 3, . . . , n.

Lemma 1

There exists a permutation of 1, 2, 3, . . . , n with disorder d, if 0 ≤ d ≤
(
n
2

)
.

Proof. Start with the identity permutation 1, 2, 3, . . . , n, which has disorder 0. Now
repeatedly swap two adjacent elements that are in order. We may do this until all
adjacent elements are out of order, which occurs only with the reverse permutation
n, . . . , 3, 2, 1. Notice that each swap increases the disorder by exactly 1, and that this
process takes us from disorder 0 to disorder

(
n
2

)
. Thus disorder d must have been attained

after exactly d moves.

Consider
(
n−1
2

)
+ 1 permutations of 2, 3, 4, . . . , n, with one of each disorder from 0 to(

n−1
2

)
, by Lemma 1. Putting the element 1 at the beginning of each of these permutations

gives
(
n−1
2

)
+ 1 permutations of 1, 2, 3, . . . , n with distinct disorders. Now consider the

reverses of each of these permutations. They will all have the pair (1, n) out of order,
and thus cannot be obtained from the original permutations by moves. Furthermore
they all have distinct disorders, from

(
n
2

)
−
(
n−1
2

)
= n− 1 to

(
n
2

)
− 0 =

(
n
2

)
. Thus these

2
(
n−1
2

)
+ 2 permutations all cannot be obtained from each other by moves. This proves

the lower bound.
Now we show that 2

(
n−1
2

)
+ 2 sets are attainable. We will categorize permutations

into sets by their disorder and whether the pair (1, n) is in order or not. Note that if
(1, n) is in order we must have a disorder of at most

(
n−1
2

)
, since at most one of the pairs
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(1, k) and (k, n) can be out of order for each 1 < k < n. Similarly if (1, n) is out of order
we must have a disorder of at least n − 1. Thus we are using only 2

(
n−1
2

)
+ 2 sets. It

remains to show that any two permutations in the same set are obtainable from each
other by a sequence of moves.

Lemma 2

Given a permutation of 1, 2, 3, . . . , n we can perform a sequence of moves to obtain
a permutation with n either at the beginning or the end.

Proof. If n is at the beginning or end of the permutation we are done. Otherwise suppose
that k and l are the two elements adjacent to n, in some order. Without loss of generality,
k < l < n. Then l is the median of the three elements k, l, and n. So we may perform a
move on these three elements (as n, not l, is the middle term).

We will repeat this process. As we do so, consider the ordered pair (x, y), where x
is the minimum of the elements adjacent to n, and y is the number of elements on the
other side of n from x. Note that if y ever reaches 0 then we are done.

We claim that this ordered pair is lexicographically monotonically decreasing. Suppose
that this ordered pair is (x0, y0) before a move (as described above) and (x1, y1) after.
Notice that the move will keep x0 adjacent to n. Thus if x1 6= x0 then x1 = min(x0, x1) <
x0. Now if x1 = x0 then one number has moved from the other side of n from x to the
same side of n as x. In this case y1 = y0 − 1 < y0. This proves our claim. Now note that,
by the claim, we must eventually obtain an ordered pair (x, y) with y = 0, as desired.

Now we will show by induction on n that given two permutations σ and π of 1, 2, 3, . . . , n
with the same disorder and with (1, n) in the same relative order, σ and π are obtainable
from each other by a sequence of moves.

It is easy to check values of n ≤ 4.
WLOG assume that both σ and π have (1, n) in order. By Lemma 2 we can perform

a sequence of moves to obtain n at the end of both permutations (it cannot be at the
beginning since that would put (1, n) out of order). Now no pairs with n are out of order
in either permutation. Thus looking at only the first n− 1 terms of the permutations
we see that they still have the same disorder. Then if the pair (1, n− 1) has the same
relative order in both permutations we are done by induction.

Now suppose (1, n− 1) does not have the same relative order in both permutations.
Consider the disorder d of both permutations. On one hand, since we have (1, n− 1) in
order d ≤

(
n−1
2

)
− (n− 1). Similarly, since we have (1, n− 1) out of order, d ≥ n− 1.

Note that we can choose a permutation of 1, 2, 3, . . . , n− 1 with the last three terms
being x, 1, n− 1 and having disorder d, such that x 6= n− 2. Similarly, we can choose a
permutation with the last two terms being n− 1, 1 and having disorder d. By induction,
we can perform a sequence of moves on the first n− 1 terms (leaving n in place) of σ
and π to obtain two permutations of the form . . . , x, 1, n− 1, n and . . . , n− 1, 1, n. It is
sufficient to show that we can also perform a sequence of moves to obtain the latter from
the former. We perform the following moves:

. . . , x, 1, n− 1, n→ . . . , 1, n− 1, x, n→ . . . , 1, x, n, n− 1

Now by Lemma 2 on the first n − 2 terms we may perform a sequence of moves to
move 1 to the beginning or to the end of the first n− 2 terms. Since x 6= n− 2, 1 must
be at the end of the first n − 2 terms, otherwise the relative order of (1, n − 2) would
change. Thus we now have a permutation of the form . . . , 1, n, n − 1 from which we
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obtain a permutation of the form . . . , n − 1, 1, n. Then applying induction again we
obtain specifically the desired permutation of the form . . . , n− 1, 1, n.

Remark. We can also prove Lemma 2 quite easily with induction. However the proof given
more explicitly shows the actual moves we make. That is, we “attach” n to a “small” element
and slide it around with that element until it hits an even “smaller” element repeatedly.

Remark. Result is known: https://arxiv.org/pdf/0706.2996.pdf.
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G1. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. Let BH
intersect AC at E, and let CH intersect AB at F . Let AH intersect Γ again at P 6= A.
Let PE intersect Γ again at Q 6= P . Prove that BQ bisects segment EF .

(Luke Robitaille)

Here are four solutions (unedited).

First solution (Maxwell Jiang) Let R be the midpoint of AH. As HR ·HP = HB ·
HE = 1

2Pow(H) we have B,R,E, P cyclic. Now since ∠ABQ = ∠RPE = ∠RBE we
have R,Q isogonal wrt ∠ABE. But AFHE is cyclic, and so since BR is a median of
4BAH we have BQ is a median of similar 4BEF , as desired.

Second solution (Milan Haiman) Let X be the midpoint of EF and let Y be the
midpoint of AH. Since (AEHF ), 4ABH ∼ 4EBF .

Since BY and BX are medians, by this similarity we have ∠Y BH = ∠FBX.
Let AH intersect BC at D. Note that HY · HP = HA · HD = HE · HB since

(AEDB). Thus (Y EPB).
Now we have ∠ABX = ∠FBX = ∠Y BH = ∠Y BE = ∠Y PE = ∠APE.
Thus BX and PE intersect on Γ at Q.

Third solution (Carl Schildkraut) Let K be the point so that (AK;BC) = −1. It is
well known that KP and EF intersect at some point R on BC. Now, apply Pascal’s
theorem on the cyclic hexagon (KPQBCA). We see KP ∩ BC = R, PQ ∩ AC = E,
so BQ ∩ AK lies on EF . However, as EF and BC are anti-parallel in ∠BAC, the A-
symmedian in ∆ABC is the A-median of ∆AEF , and as such AK ∩EF is the midpoint
of EF , which BQ thus passes through.

Fourth solution (Ankan Bhattacharya) Let M be the midpoint of EF . Use complex
numbers with Γ unit circle; it’s easy to obtain e = 1

2(a + b + c − ac
b ), p = − bc

a , m =
1
2(a+ b+ c)− 1

4a( bc + c
b).

To show that lines BM and PE meet on Γ, it suffices to prove

](BM,PE) = ]BAH ⇐⇒ p−e
b−m ÷

h−a
b−a ∈ R.

Computing the left fraction, we obtain

p− e
b−m

=
− bc

a −
1
2(a+ b+ c− ac

b )

b− 1
2(a+ b+ c) + 1

4a( bc + c
b)

=
−4b2c2 − 2(abc(a+ b+ c)− a2c2)

4ab2c− 2abc(a+ b+ c) + a2(b2 + c2)

= −2 · abc(a+ b+ c) + 2b2c2 − a2c2

−2a2bc+ 2ab2c− 2abc2 + a2(b2 + c2)

= −2 · c(a+ b)(ab− ac+ 2bc)

a(b− c)(ab− ac+ 2bc)

= −2 · c(a+ b)

a(b− c)
.
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Thus

−1

2
· p− e
b−m

÷ h− a
b− a

=
c(a+ b)(b− a)

a(b− c)(b+ c)

and its conjugate equals
1
c
a+b
ab

a−b
ab

1
a
c−b
bc

b+c
bc

which is clearly the same.
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G2. Snorlax is given three pairwise non-parallel lines `1, `2, `3 and a circle ω in the
plane. In addition to a normal straightedge, Snorlax has a special straightedge which
takes a line ` and a point P and constructs a new line `′ passing through P parallel to `.
Determine if it is always possible for Snorlax to construct a triangle XY Z such that the
sides of 4XY Z are parallel to `1, `2, `3 in some order, and X,Y, Z each lie on ω.

(Vincent Huang)

The answer is yes. Here are two solutions.

First solution (Maxwell Jiang) We proceed in three steps.

Claim — Snorlax can construct the center of ω.

Proof. Draw a chord and then two more parallel chords; intersecting diagonals of isosceles
trapezoids gives us a line passing through the center, and repeating this gives us the
center.

Remark (Zack Chroman). The Poncelet-Steiner theorem states that using a single circle
with marked center and straightedge alone, one can do any usual straightedge-compass
construction. Thus quoting this theorem would complete the problem.

Claim — We can construct the midpoint of any segment s.

Proof. All you have to do is construct a parallelogram!

Claim — We can construct the perpendicular bisector of any segment s.

Proof. By above, we can construct the midpoint M of s. We can also construct a chord
s′ of ω parallel to s, and its midpoint M ′. Then draw line M ′O, and finally the line
through M parallel to it.

Suppose lines `1, `2, `3 determine a triangle X ′Y ′Z ′ with circumcenter O′ (which we
can construct by the previous claim), while O is the center of ω (which we can construct
by the first claim). We can draw radii of ω parallel to X ′O′, Y ′O′, Z ′O′ and finish.

Second solution, unedited (Vincent Huang) Pick an arbitrary point A ∈ ω. Draw
B,C,D ∈ ω so that BA ‖ l1, CB ‖ l2, DC ‖ l3.

Claim: The midpoint M of arc AD is fixed regardless of the choice of A.
Proof: Suppose we had some different starting point A′, with corresponding B′, C ′, D′.

If A′ is an arc measure θ clockwise of A, then B′ is an arc measure θ counterclockwise of
B, so C ′ is θ clockwise of C, so D′ is θ counterclockwise of D. Thus it follows that arcs
A′A,D′D have equal measure and are in opposite directions, so the midpoints of arcs
AD,A′D′ are the same.

Then if we choose X,Y, Z so that XY ‖ l1, Y Z ‖ l2, ZX ‖ l3, it follows from the above
letting A = X that the midpoint of arc XX should also be M , i.e. M = X. So it suffices
to construct the midpoint M of arc AD, as it is a choice for a vertex of 4XY Z.

To do this we note for any A′, D′ that ADD′A′ is an isosceles trapezoid, so if E =
AA′ ∩ DD′, F = AD′ ∩ A′D then EF is the perpendicular bisector of AD,A′D′, so
intersecting EF with ω yields M as desired.
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Third solution using projective geometry, unedited (Zack Chroman) The answer is
yes. Work in RP2. We have a straightedge, a marked circle and the line at infinity. We
will use the following theorem, known as the Circumcevian Ping-Pong Theorem. I can’t
find the reference for it, but it’s real! Promise.

Theorem

Let ω be a circle, and let P,Q,R lie on a fixed line. Then there exists a fixed S on
the same line such that, for any A on the circle, if

B = AP ∩ ω,C = QB ∩ ω,D = RC ∩ ω,

then A,D, S are collinear. Another way to phrase this is that a combination of any
even number of ”second-intersection maps” on a circle, all of which come from points
on a fixed line, is the identity iff it’s the identity at one point.

Proof. Let the line intersect the circle at I, J (if the line doesn’t intersect the circle, work
in CP2; it’s clear that this theorem holds there iff it holds in RP2). Then define S so that,
for a fixed choice A0, B0, C0, D0, S lies on A0D0. Then the combination of the projection
maps through P,Q,R, S fix A0, but also fix I, J . Moreover, they define a projective map
on ω, which is therefore the identity.

One can also prove this similarly with the Desargues Involution Theorem, which directly
gives an involution on line PQR that swaps P,R, I, J , and Q,S0; so S0 is fixed.

Now note that we have three points P1, P2, P3 lying on the line at infinity and also
l1, l2, l3, respectively. Then by the theorem there exists a fourth point P4 such that, for
any X on the circle, projecting through P1, P2, P3, P4 in this order gives X again.

Then take a fixed A0 on the circle, and define B0, C0, D0 as these projections, so that
A0, D0, P4 are collinear. A0 = X will work if and only if A0 = D0. It follows that we
want a point A0 such that A0P4 is tangent to ω. We can construct this, but it’s a little
annoying. Our goal will be to construct the perpendicular bisector of A0D0; intersecting
this with the circle will give an A1 whose tangent passes through P4, at which point we
can take A1 = X and be done.

To do this, take an arbitrary point W in the plane, and E ∈ A0W . Then let F ∈ D0W
with EF ‖ A0D0. Quadrilateral A0EFD0 is a trapezoid, so if G = A0F ∩D0E, it follows
that GW passes through the midpoint of A0D0. Now we can do the same process, but
replacing A0D0 with another chord parallel to it, to get another midpoint; connecting
these midpoints gives the perpedicular bisector.

Morally, we’re trying here to construct the polar of P4 with respect to ω, which is
the locus of the midpoints of chords passing through P4. Unfortunately, with only a
straightedge constructing midpoints is as much work as constructing general harmonic
conjugates, so we need to build the Cevalaus construction to do it.
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G3. Let 4ABC be an acute triangle with incenter I and circumcenter O. The incircle
touches sides BC,CA, and AB at D,E, and F respectively, and A′ is the reflection of A
over O. The circumcircles of ABC and A′EF meet at G, and the circumcircles of AMG
and A′EF meet at a point H 6= G, where M is the midpoint of EF . Prove that if GH
and EF meet at T , then DT ⊥ EF .

(Ankit Bisain)

The following harmonic solution is given by Maxwell Jiang.
Define T instead as the foot to EF from D; we wish to show T ∈ GH. Let (AI) meet

(ABC) a second time at a point T ′ so that I, T, T ′ are collinear, say by inversion about the
incircle. By radical axis on (AI), (ABC), (A′EFG) we get a point X = AT ′ ∩EF ∩A′G.
Since ∠XGA = ∠XMA = 90◦, point X lies on (AMG).

Now note that
−1 = (A, I;E,F )

T ′
= (X,T ;E,F ),

so by properties of harmonic divisions we have TM · TX = TE · TF . This implies that
T lies on the radical axis of (AMG) and (A′EFG), as desired.

28



21st ELMO 2019 Shortlisted Problems

G4. Let triangle ABC have altitudes BE and CF which meet at H. The reflection
of A over BC is A′. The circumcircles of 4AA′E and 4AA′F meet the circumcircle of
4ABC at P 6= A and Q 6= A respectively. Lines BC and PQ meet at R. Prove that
EF ‖ HR.

(Daniel Hu)

Solution by Maxwell Jiang (at least for ABC acute):
Let D be the foot from A. Let N be the midpoint of AH, and let X = EF ∩BC. Let

(AH) meet (ABC) again at Y so that A,X, Y collinear and define P ′ = EF ∩NC,Q′ =
EF ∩NB. Finally, let AH hit EF at Z and (ABC) again at H ′.

Note that −1 = (X,D;B,C)
N
= (X,Z;Q′, P ′). Now consider an inversion centered at

A with radius
√
AH ·AD, which swaps N,A′ and P, P ′ and Q,Q′ and X,Y and Z,H ′.

Since inversion preserves cross ratio we get −1 = (Y,H ′;Q,P ), so the tangents to (ABC)
at Y,H ′ meet on PQ. On the other hand, since −1 = (Y,H ′;B,C), these tangents also
meet on BC. Thus the concurrency point is R.

To finish, note that since RH ′ is tangent to (ABC), by reflection about BC we have
RH is tangent to (BHC). Then ]RHB = ]BCH = ]FAH = ]FEH so EF ‖ HR,
as desired.
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G5. Given a triangle ABC for which ∠BAC 6= 90◦, let B1, C1 be variable points on
AB,AC, respectively. Let B2, C2 be the points on line BC such that a spiral similarity
centered at A maps B1C1 to C2B2. Denote the circumcircle of AB1C1 by ω. Show that if
B1B2 and C1C2 concur on ω at a point distinct from B1 and C1, then ω passes through
a fixed point other than A.

(Maxwell Jiang)

The following solutions are not edited.

First solution by quotation (Andrew Gu) Let D = B1B2 ∩ C1C2, E = B1C2 ∩ B2C1.
Then D,E lie on ω. By Miquel, (C1DB2) and (B1DC2) concur on K ∈ BC. ]B2KC1 =
]B2DC1 = ]B1DC1 = ]BAC so ABC1K is cyclic, likewise AB1CK is cyclic. This
reduces it to ELMO SL 2013 G3.

Second solution by projetive geometry (Vincent Huang) Let X = B1B2 ∩C1C2. By
spiral sim, Y = C2B1 ∩B2C1 lies on ω as well. By Brokard on B1Y C1X, the tangents
to ω at B1, C1 meet on BC. Now define Z 6= C1 as BC1 ∩ ω, and let W = AZ ∩B1C1.
By Brokard again, BC is the polar of W , and we get that B1, Z, C collinear.

Now let P be the spiral center sending BC 7→ C1B1, so that P ∈ ω and P ∈ (BZC).
Note that

∠PBC = ∠PC1B1 = ∠PAB, and ∠PCB = ∠PB1C1 = ∠PAC.

Hence (ABP ) and (ACP ) are tangent to BC, and P (the A-HM point) is the desired
fixed point.

Third inversion solution (Maxwell Jiang) Let S = B1C1∩CB. By the spiral similarity,
S lies on both (AB1C2) and (AC1B2).

Now invert about A with arbitrary radius, with X ′ denoting the image of X. So, BC
maps to a circle Ω passing through A, and ω maps to a line `. Note that S′ = Ω∩(AB′1C

′
1).

Hence, S′ is the spiral center sending C ′C ′1 to B′B′1. Then, B2, C2 are the intersections of
S′B′1, S

′C ′1 with Ω. Now, ∠S′B′2B
′ = ∠S′C ′B′ = ∠S′C ′1B

′
1 and similar angle equalities

for ∠S′C ′2C
′ give

C ′C ′2 ‖ B′B′2 ‖ B′1C ′1.

The given condition equates to (AB′2B
′
1) and (AC ′1C

′
2) meeting at a point K on `.

Note that 4AB′2C ′2 ∼ 4AC ′1B′1. Since ∠AB′2K = 180◦ − ∠B′1, we have ∠C ′2B
′
2K =

180◦ − ∠B′1 − ∠C ′1 = ∠B′2AC
′
2, so KB′2 is tangent to Ω. Similarly, KC ′2 is tangent to Ω.
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A

B′
1 C′

1

B′

C′

C′
2

B′
2

K

Since the tangents to Ω at B′2, C
′
2 meet on `, for symmetry reasons the tangents at B′, C ′

also meet on `. However, this point is fixed, so ` passes through a fixed point, as desired.
�

Note: To show that the fixed point is the HM point, instead of taking an inversion
with arbitrary radius, take the one that swaps (AH) and BC. Then use the fact that
the tangents to (AH) at the feet of the altitudes meet at the midpoint of BC, which is
the inverse of the HM point.
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G6. Let ABC be an acute scalene triangle and let P be a point in the plane. For
any point Q 6= A,B,C, define TA to be the unique point such that 4TABP ∼ 4TAQC
and 4TABP,4TAQC are oriented in the same direction (clockwise or counterclockwise).
Similarly define TB, TC .

(a) Find all P such that there exists a point Q with TA, TB, TC all lying on the
circumcircle of 4ABC. Call such a pair (P,Q) a tasty pair with respect to 4ABC.

(b) Keeping the notations from (a), determine if there exists a tasty pair which is also
tasty with respect to 4TATBTC .

(Vincent Huang)

The following solution is by Andrew Gu:
For (a), the answer is all P which have an isogonal conjugate (that is, any point P not

on the circumcircle or sides).
Let (P,Q) be a tasty pair. Then

]BPC = ]BPTA+]TAPC = ]QCTA+]TABQ = ]BTAC+]CQB = ]BAC−]BQC.

Cyclic variants hold, and these imply P and Q are isogonal conjugates.
Conversely, let P and Q be isogonal conjugates. The same steps as above (in a different

order) show that ]BAC = ]BTAC, so TA is on (ABC), and likewise so are TB and TC .
For (b): Let TATBTC be the reflection of ABC about O, the circumcenter. Consider

the inconic with center O. Let P and Q be its foci.
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N1. Let P be a polynomial with integer coefficients so that P (0) = 1. Let x0 = 0, and
let xi+1 = P (xi) for all i ≥ 0. Show that there are infinitely many positive integers n so
that gcd(xn, n+ 2019) = 1.

(Carl Schildkraut and Milan Haiman)

We present a few solutions.

First solution by mod-preservation The “main” case is:

Claim — If there exists an index i for which |xi+1 − xi| > 1 then we are done.

Proof. Let p be any prime dividing the difference and let t = xi, so P (t) ≡ t (mod p).
We have t 6≡ 0 since P (0) ≡ 1 (mod p). Consequently, we get

0 6≡ xi ≡ xi+1 ≡ xi+2 ≡ . . . (mod p)

and in this way we conclude taking n = pe − 2019 for any exponent e large enough is
okay.

So suppose that xi+1 ∈ {xi − 1, xi, xi + 1} for every i. Then either

• The sequence (xn)n is periodic (with period at most 2), so the problem is easy; or

• we have P (x) ≡ 1± x, which is also easy.

Second solution by orbits (by proposer) Let p > 2019 be any prime. We claim that
n = p should work, and in fact that we always have

xp 6≡ 0 (mod q)

for any q | p+ 2019.
To see this, assume for contradiction xp ≡ 0 (mod q). Then (xn mod q)n is periodic,

with period dividing p. But the period should also be at most q, and not equal to 1 as
P (0) = 1. As q < p, this is a contradiction.
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N2. Let f : Z>0 → Z>0 be a function. Prove that the following two conditions are
equivalent:

(i) f(m) + n divides f(n) +m for all positive integers m ≤ n;

(ii) f(m) + n divides f(n) +m for all positive integers m ≥ n.

(Carl Schildkraut)

We show that both are equivalent to f(x) ≡ x+ c for a non-negative integer c. The
following solution is given by Maxwell Jiang.

Part (i): First suppose that f(m) + n | f(n) +m holds for all m ≤ n. This implies
f(m) + n ≤ f(n) +m =⇒ f(m)−m ≤ f(n)− n for all m ≤ n. Define g(n) = f(n)− n
so that g is non-decreasing and the condition becomes

g(m) +m+ n | g(n) +m+ n =⇒ g(m) +m+ n | g(n)− g(m).

Fix m ∈ N and consider

g(m) +m+ n | g(n)− g(m)

g(m+ 1) +m+ 1 + n | g(n)− g(m+ 1)

Let d = g(m+ 1)− g(m) + 1 be the difference between the left sides; note that d > 0.
Pick large n so that d divides both left sides. If d = 1, then g(m) = g(m+ 1). Else, we
get

g(n) ≡ g(m) ≡ g(m+ 1) (mod d)

which is impossible. Hence g(m) = g(m+ 1), which applied to all m gives g constant as
needed.

Part (ii): Now suppose f(m) + n | f(n) + m for all m ≥ n. Fix n = 1 and let
m = p − f(1) for arbitrarily large primes p. Then we force f(p − f(1)) + 1 = p, so in
particular we have infinitely many X such that f(X) = X + c for a constant c ≥ 0.
Fixing m and setting n = X gives

f(m) +X | X + c+m =⇒ f(m) +X | c+m− f(m)

so as X grows big we force f(m) = m+ c, as desired.

Remark. Note that (i) and (ii) together imply that f(x) + y and f(y) +x divide each other,
hence are equal, so f(x) + y = f(y) + x ⇐⇒ f(x) ≡ x+ c. So it is unsurprising that we
are just solving two functional equations.
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N3. Let S be a nonempty set of integers so that, for any (not necessarily distinct)
integers a and b in S, ab+ 1 is also in S. Show that there are finitely many (possibly
zero) primes which do not divide any element of S.

(Carl Schildkraut)

The following solution is due to Ankan Bhattacharya. It’s enough to work modulo p:

Claim — Let p be a prime and let G be a nonempty subset of Fp such that if
a, b ∈ G, then ab+ 1 ∈ G. Then either G is a singleton, or G = Fp.

Proof. If 0 ∈ G then 1 ∈ G and we get G = Fp. So suppose 0 /∈ G, and let G =
{x1, . . . , xn} be its n distinct elements.

If 1 < n < p, then we get a map

G→ G by g 7→ x1g + 1 (mod p)

which is injective (since x1 6= 0), hence bijective. Thus, if we sum, letting s = x1+ · · ·+xn,
we find

s = x1 · s+ n (mod p).

If s ≡ 0, we get n ≡ 0 (mod p), contradiction. Otherwise, we find x1 = 1− n/s (mod p).
But then the same logic shows x2 = n

1−s , so x1 = x2, contradiction.

The problem now follows since if s is any element of S and p is any prime not dividing
s2 − s+ 1, then S contains all residues modulo p.
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N4. A positive integer b ≥ 2 and a sequence a0, a1, a2, . . . of base-b digits 0 ≤ ai < b
is given. It is known that a0 6= 0 and the sequence {ai} is eventually periodic but has
infinitely many nonzero terms. Let S be the set of positive integers n so that the base-b
number (a0a1 . . . an)b is divisible by n. Given that S is infinite, show that there are
infinitely many primes dividing at least one element of S.

(Carl Schildkraut and Holden Mui)

Let gcd(x, y) = 1 so that

x

y
=
∞∑
i=0

ai
bi
.

Note that

(a0 · · · an)b =

⌊
xbn

y

⌋
,

unless {ai} is eventually b− 1; either way, we have

(a0 · · · an)b =
xbn − t
y

for some 0 ≤ t < y. If S is infinite, then there exists some fixed 0 ≤ t < y so that the set
of integers n so that

xbn ≡ t (mod yn)

is infinite. Call this set S′. We see that t 6= 0 (infinitely many nonzero terms condition;
this condition is essential) and x > y > t (from the a0 6= 0 condition).

Our main claim is that for any prime p, the set {νp(n)|n ∈ S′} is bounded above. This
is clear for p|b, wherein the above cannot hold if n > νp(t). Now, assume n = mpk ∈ S′
for some m, k. We have

xbmp
k ≡ t mod pk =⇒ xp−1bmp

k(p−1) ≡ tp−1 mod pk.

As gcd(p, b) = 1, bp
k−1(p−1) ≡ 1 mod pk, so that term disappears, and we thus have

xp−1 ≡ tp−1 mod pk.

As x > t, this cannot hold for large enough k, finishing the proof.
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N5. Let m be a fixed even positive integer. Find all positive integers n for which there
exists a bijection f from {1, . . . , n} to itself such that for all x, y ∈ {1, . . . , n} with mx−y
divisible by n, we also have

(n+ 1) | f(x)m − f(y).

(Milan Haiman and Carl Schildkraut)

Solution by Andrew Gu (unedited):
We are asking for m,n such that the mapping x 7→ mx on Z/nZ and the mapping

x 7→ xm on U = (Z/(n+ 1)Z) \ {0} are isomorphic (behave in the same way by relabeling
elements).

First we claim n+ 1 is a product of distinct primes. Otherwise, there exists x ∈ U for
which xm ≡ 0 (mod n+ 1).

Next note that the mapping x 7→ mx on Z/nZ is a gcd(m,n)-to-1 mapping, so any
element in the range has a preimage of size gcd(m,n). We claim this is impossible for the
second mapping if n+1 = p1 · · · pk is a product of k distinct primes, two of which are odd.
WLOG let p1, p2 be odd. The preimage of the element which is 1 (mod p1), 1 (mod p2),
and 0 modulo all other pi has size gcd(p1 − 1,m) gcd(p2 − 1,m) while the preimage of
the element which is 1 (mod p1) and 0 modulo all other pi has size gcd(p1 − 1,m). As
gcd(pi − 1,m) ≥ 2, these preimages have different sizes.

The remaining cases are n+ 1 = 2p or n+ 1 = p where p is prime. In the case where
n + 1 = 2p, note that p > 2 as we showed that n + 1 is a product of distinct primes.
Then p ∈ U is an mth power of one element (itself) while p+ 1 is an mth power of both
p− 1 and p+ 1. Hence this case fails.

In the case where n+ 1 is prime, let f(x) = gx for a primitive root g. This works, so
for any m, there exists f if and only if n+ 1 is prime.
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