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Problems
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.
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For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)
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Solutions
A1. Let f : R → R be a bijective function. Does there always exist an infinite number
of functions g : R → R such that f(g(x)) = g(f(x)) for all x ∈ R?

(Daniel Liu)

Yes. It’s clear f0, f1, f2, . . . all commute with f . If f doesn’t have finite order this
collection is infinite and valid.

Else, suppose that fn = id, where n is minimal. If n = 1 the problem is clear, so suppose
n > 1. Then f is composed of some cycles; some cycle length d | n appears infinitely
many times. Let a countable number of these cycles be xr,1 → xr,2 → · · · → xr,d → xr,1
for r ∈ Z.
Then for every integer s, create a new function hs fixing everything except the xk,ℓ,

and send every xr,a → xr+s,a. It is clear that every hs commutes with f .
This gives infinitely many g, unless all but finitely many of the cycles have length

1. In that case, we can find more g by swapping any two fixed points of f and leaving
everything else intact.
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A2. Let a1, a2, . . . , am be a finite sequence of positive integers. Prove that there exist
nonnegative integers b, c, and N such that⌊

m∑
i=1

√
n+ ai

⌋
=
⌊√

bn+ c
⌋

holds for all integers n > N .

(Carl Schildkraut)

If all the ai are equal, then
∑m

i=1

√
n+ ai =

√
m2n+m2a1 and so (b, c) = (m2,m2a1)

works fine.
Let us assume this is not the case. Instead, will take b = m2 and c = m(a1+· · ·+am)−1

and claim it works for N large enough.
On the one hand,

m∑
i=1

√
n+ ai < m ·

√
n+

a1 + · · ·+ am
m

=
√
m2 · n+ c+ 1 ≤

⌈√
m2 · n+ c+ 1

⌉
≤
⌊√

m2 · n+ c
⌋
+ 1.

On the other hand, let λ = c
2(c+1) <

1
2 . We use the following estimate.

Claim. If n is large enough in terms of (a1, . . . , am) then
√
n+ ai ≥

√
n+ λai√

n
.

Proof. Squaring both sides, it’s equivalent to ai ≥ 2λ · ai +
λ2a2i
n , which holds for n big

enough as 2λ < 1.

Now,
m∑
i=1

√
n+ ai ≥

m∑
i=1

(√
n+

λai√
n

)
≥ m

√
n+

λ · (a1 + · · ·+ an)√
n

= m
√
n+

λ · (c+ 1)

m
√
n

= m
√
n+

c

2m
√
n
>
√
m2 · n+ c ≥

⌊√
m2n+ c

⌋
.

This finishes the problem.

Remark. Obviously, b = m2 for asymptotic reasons (by taking n large). As for possible
values of c:

• If a1 = · · · = am, then one can show c = m(a1 + · · ·+ am) is the only valid choice.

Indeed, taking n of the form n = k2 − a and n = k2−1
m2 − a is enough to see this.

• But if not all ai are equal, the natural guess of taking c = m(a1 + · · ·+ an) is not
valid in general. For example, we have that⌊√

n+
√
n+ 2

⌋
̸=
⌊√

4n+ 4
⌋

n ∈ {t2 − 1 | t = 2, 3, . . . }.

I think one can actually figure out exactly which c are valid, though the answer will
depend on some quadratic residues, and we do not pursue this line of thought here.

So any correct solutions must distinguish these two cases.

8



20th ELMO 2018 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

A3. Let a, b, c, x, y, z be positive reals such that 1
x + 1

y + 1
z = 1. Prove that

ax + by + cz ≥ 4abcxyz

(x+ y + z − 3)2
.

(Daniel Liu)

We present three solutions.

First solution, proof without words (by proposer)

ax + by + cz = yz · a
x

yz
+ zx · a

y

zx
+ xy · a

z

xy

≥ (xy + yz + zx)

((
ax

yz

)yz ( by

zx

)zx( cz

xy

)xy) 1
xy+yz+zx

= (xy + yz + zx) · (abc)
xyz

xy+yz+zx

x
xy+zx

xy+yz+zx y
yz+xy

xy+yz+zx z
zx+yz

xy+yz+zx

≥ (xy + yz + zx) · (abc)
xyz

xy+yz+zx(
x· xy+zx

xy+yz+zx
+y· yz+xy

xy+yz+zx
+z· zx+yz

xy+yz+zx

2

)2

= (xy + yz + zx) · 4(abc)
xyz

xy+yz+zx(∑
cyc x ·

(
1− yz

xy+yz+zx

))2
=

4abc(xy + yz + zx)

(x+ y + z − 3 xyz
xy+yz+zx)

2

=
4abcxyz

(x+ y + z − 3)2
.

Second solution, by weighted AM-GM (Andrew Gu) By weighted AM-GM,

1

x
· xax + 1

y
· yby + 1

z
· zcz ≥ x

1
x y

1
y z

1
z abc.

Hence it suffices to show

x
1
x y

1
y z

1
z ≥ 4xyz

(x+ y + z − 3)2
.

By weighted AM-GM,

2x
1
2
(1− 1

x
)y

1
2
(1− 1

y
)
z

1
2
(1− 1

z
) ≤ 2 · 1

2
(x− 1 + y − 1 + z − 1) = x+ y + z − 3.

Squaring both sides and rearranging proves the required inequality.

Third solution, by Hölder and Schur/Muirhead (Evan Chen) By Hölder and weighted
AM-GM we have√(

1

x2
+

1

y2
+

1

z2

)
(ax + by + cz) ≥ 1

x
· ax/2 + 1

y
· by/2 + 1

z
· cz/2 ≥ (abc)1/2.
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Hence, it suffices to prove that

(x+ y + z − 3)2 ≥ 4xyz
(
1/x2 + 1/y2 + 1/z2

)
∀1
x
+

1

y
+

1

z
= 1

which is a 3-variable symmetric inequality. It also happens to be is MOP 2011, K4.1,
done in my SOS handout. We give a proof below (with a = 1/x, etc).

Claim (Black MOP 2011, Test 4, Problem 1). If a, b, c > 0 then(
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
− 3

)2

≥ 4

(
(a+ b+ c)(a2 + b2 + c2)

abc

)
Proof. Expanding and clearing denominators it’s just∑

sym

a4b2 +
∑
cyc

a3b3 + 6a2b2c2 ≥ 2
∑
cyc

a4bc+ 2
∑
sym

a3b2c

which can also be written as

0

0 0

1 -2 1

2 -2 -2 2

1 -2 6 -2 1

0 -2 -2 -2 -2 0

0 0 1 2 1 0 0

in Chinese dumbass notation. This rewrites as∑
cyc

a4(b− c)2 + 2
∑
cyc

ab(ab− bc)(ab− ac) ≥ 0

which is evident (the latter sum is “upsidedown triangle Schur”).
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A4. Elmo calls a monic polynomial with real coefficients tasty if all of its coefficients
are in [−1, 1]. A monic polynomial P with real coefficients and complex roots χ1, . . . , χm

(counted with multiplicity) is given to Elmo, and he discovers that there does not exist
a monic polynomial Q with real coefficients such that P ·Q is tasty. Find all possible
values of max (|χ1|, . . . , |χm|).

(Carl Schildkraut)

We claim the answer is r > 1. The answer is divided into two parts.

Part I: Any value of r > 1 can be achieved. To prove this, we will show that the
polynomial

P (x) = xn − rn

has no tasty multiples if rn ≥ 2 (such an n exists because r > 1). Set M = rn. Assume
we have a polynomial

R(x) =
N∑
i=0

aix
i

so that −1 ≤ ai ≤ 1 for all i (aN = 1) and P |R. Taking R modulo P , we get that, with
N = bn+ c and 0 ≤ c < n (setting ak = 0 if k > N),

R(x) =
n−1∑
j=0

b∑
k=0

akn+jx
kn+j ≡

n−1∑
j=0

xj

[
b∑

k=0

akn+jR
k

]
.

We have this must be the zero polynomial (since P |R); specifically, taking j = c,

b∑
k=0

ank+cR
k = 0

b−1∑
k=0

(−ank+c)R
k = abn+cR

b

b−1∑
k=0

|ank+c|Rk ≥ Rb

(since abn+c = aN = 1). However, since |ank+c| ≤ 1, we then have

b−1∑
k=0

Rk ≥ Rb

Rb − 1

R− 1
≥ Rb

Rb − 1 ≥ Rb+1 −Rb

Rb(2−R) ≥ 1.

However, as R ≥ 2, this is false.
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Part II: Any polynomial with r ≤ 1 has a tasty multiple. Define the sparsity of a
polynomial to be the greatest common divisor of the exponents m for which the coefficient
of xm in P is not zero. Equivalently, it is the largest integer d so that P (x) = Q(xd) for
some polynomial Q.

We prove the following theorem:

Theorem. Given any complex number z for which |z| ≤ 1, there exist tasty polynomials
with z as a root that have arbitrarily large sparsities.

Proof. Let z = reiθ. If θ is a rational multiple of π (say, θ = aπ/b), then we take the
polynomial xbn−rbn for any integer n; this has sparsity bn and is tasty (as r ≤ 1, rbn ≤ 1).
So, it suffices to prove this in the case where θ is not a rational multiple of π, and we
henceforth assume this.
We claim that, for infinitely many n, the polynomial

x2n − 2 cos (nθ) rnxn + r2n

is tasty (note that this polynomial has sparsity n and as such the theorem is implied by
this claim). First note that this polynomial reduces to

xn = rne±niθ =
(
re±iθ

)n
,

which is true at x = reiθ = z, so z is in fact a root.
We recall the following lemma:

Lemma. For any real number ϕ which is not a rational multiple of π, the sequence
an = cos (nϕ) has infinitely many terms in the range [−1/2, 1/2].

Indeed, let {x} be the fractional part of x, and consider the sequence

αn =

{
nϕ

2π

}
.

We see that −1/2 ≤ an ≤ 1/2 iff 1/6 ≤ αn ≤ 1/3 or 2/3 ≤ αn ≤ 5/6. It is well known
that the sequence xn = {nx} is dense in [0, 1] for any irrational x, so this is true. Thus,
for infinitely many n, as θ has been assumed not to be a rational multiple of π, the
coefficients of P are bounded above in absolute value by rn and r2n for infinitely many
n, both of which are ≤ 1 as r ≤ 1.

We now provide a second lemma.

Lemma. If P (x) and Q(x) are both tasty polynomials and the sparsity D of P is greater
than the degree d of Q, then the product R(x) = P (x)Q(x) is also tasty.

Proof. Write

P (x) =

s∑
j=0

ajx
Dj , Q(x) =

d∑
k=0

bkx
k.

Then,

P (x)Q(x) =
s∑

j=0

d∑
k=0

ajbkx
Dj+k.

As D > d, none of these terms interfere with one another (for each integer n, there is at
most one choice of 0 ≤ j ≤ s, 0 ≤ k ≤ d so that Dj + k = s), so the coefficients of R(x)
are just the values of ajbk as j and k range over the desired range; as each aj and bk are
of magnitude ≤ 1, each pairwise product is as well, finishing the proof.
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Given a polynomial P with roots χ1, . . . , χm in C (possibly with duplicates), we will
inductively construct the polynomial R(x) that is tasty and that P divides. We define a
sequence of polynomials R0, . . . , Rm so that R0(x) = 1, and for each 0 < k ≤ m, we take
a tasty polynomial Pk(x) with root χk and sparsity greater than the degree of Rk−1, and
take Rk(x) = Rk−1(x)Pk(x). Such a Pk(x) is guaranteed to exist by our theorem, and
the product Rk−1(x)Pk(x) is guaranteed to be tasty by our lemma. Thus, we may take
R = Rm, finishing the proof.

Remark. A polynomial P that has a tasty multiple exists for all r < 2: We have upon
fixing r < 2 that for large enough n, we know rn− rn−1− · · ·− r− 1 ≤ 0. If n is minimal,
rn − rn−1 − · · · − r > 0, and we can thus take some value 0 ≤ c ≤ 1 for the constant term
by the intermediate value theorem so that P (x) = xn − xn−1 − · · · − x− c has a root at
r. If r ≥ 2, then n = 1 can be taken in Part 1 and thus no tasty multiples exist.
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C1. Let n be a positive integer. There are 2018n+ 1 cities in the Kingdom of Sellke
Arabia. King Mark wants to build two-way roads that connect certain pairs of cities
such that for each city C and integer 1 ≤ i ≤ 2018, there are exactly n cities that are a
distance i away from C. (The distance between two cities is the least number of roads
on any path between the two cities.)
For which n is it possible for Mark to achieve this?

(Michael Ren)

The answer is n even.
To see that n odd fails, note that by taking i = 1 we see the graph is n-regular; since

it has an odd number of vertices we need n to be even.
On the other hand, if n is even, then consider the graph formed by taking the vertices

of a regular (2018n+ 1)-gon and drawing edges between vertices which are at most n/2
apart. Then this works.
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C2. We say that a positive integer n is m-expressible if one can write a expression
evaluating to n in base 10, where the expression consists only of

• exactly m numbers from the set {0, 1, . . . , 9}

• the six operations +, −, ×, ÷, exponentiation ∧, concatenation ⊕, and

• some number (possibly zero) of left and right parentheses.

For example, 5625 is 3-expressible (in two ways), as 5625 = 5⊕ (5∧4) = (7⊕ 5)∧2, say.
Does there exist a positive integer A such that all positive integers with A digits are
(A− 1)-expressible?

(Krit Boonsiriseth)

Here is a solution by Evan Chen achieving A = 6 · 106, and reprising the joke “six
consecutive zeros”.
We will replace “exactly m numbers” with “at most m numbers”, since this is the

same. Suppose we group the digits of N into base 1000000, so that we have

N = s1s2s3 . . . sm

where each sm is a group of six digits (s1 padded with leading zeros, if needed, but
s1 ̸= 000000). We consider two cases.

• Suppose some group is zero; then we find that N has six consecutive zeros in its
decimal representations. Thus N has the form

N = X ⊕ (b · (1⊕ 0)∧6)⊕ Y

for some strings X and Y (possibly empty), which are formed by repeated concate-
nation.

• Otherwise, note that m ≥ 106. By a classical pigeonhole argument there exist
indices i < j such that si + · · · + sj ≡ 0 (mod 999999). Let n = 1

999999si . . . sj .
Then we can write

N = X ⊕
[
((1⊕ 0)∧6− 1) · n

]
⊕ Y

for strings X = s1 . . . si and Y = sj+1 . . . sn.

Remark (Possible motivational remarks). Ankan Bhattacharya says: I knew that the
answer had to be yes — the obvious counting argument to show answer no doesn’t work,
and the given elements are unrelated enough that proving a no answer would be very
difficult.
Evan says: I think you really do have to use exponentiation, since otherwise the

numbers aren’t big enough; but exponentiation is really painful to deal with, so I tried
to find a way to use it only once. This is less daunting than it seems because you can
concatenate digits “for free” from a size perspective; thus you just need a substring that
you can “save space” on. After a bit of guesswork I came upon the idea of taking modulo
106 − 1 = 999999 (which saves about two digits) and from there I had it.
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Remark (Possible motivational remarks). Ankan Bhattacharya points out that if we fix
all N − 2 operations, then there are only 10N−1 choices, compared to 9 · 10N−1 numbers
we need to obtain. Thus we need to use different operations to reach different numbers.
This suggests that all solutions are likely to use some amount of casework.

Unlike Ankan, I did not find the case split to be a substantial part of the problem. It
came up naturally because I had an edge case where six consecutive zeros might appear
in my argument, and the first case was patch-only in that situation.
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C3. A windmill in the plane consists of a line segment of unit length with a distinguished
endpoint, the pivot. Geoff has a finite set of windmills, such that no two windmills intersect,
and any two pivots are distance more than

√
2 apart. In an operation, Geoff can choose

a windmill and rotate it about its pivot, either clockwise or counterclockwise and by any
amount, as long as no two windmills intersect during or after the rotation. Show that
Geoff can, in finitely many operations, rotate the windmills so that they all point in the
same direction.

(Michael Ren)

Throughout the solution we will general denote pivots by P , Q, R, . . . and non-pivots
by A, B, C, . . .
We say that a configuration of windmills around S is admissible if no two windmills

intersect. The problem is equivalent to showing one can reach any admissible configuration
from any other (and the final position with the windmills pointing the same direction is
just one example of a clearly admissible configuration).

Draw a red line segment between any two pivots which have distance at most 2 (thus
these windmills could intersect). This naturally gives us a graph G.

Lemma. For c ≥
√
2, the graph G is planar.

Proof. Indeed, if PA and QB intersect, we can consider convex quadrilateral PQAB, one
of whose angles is at least 90◦. WLOG it is ∠PQA, in which case PA2 ≥ PQ2 +QA2 >
2 + 2 = 4, so PA should not be red.

Clearly, we can ignore any isolated vertices. We can also ignore any leaves in G; indeed
suppose P is a pivot with PQ the only red edge. Then we can rotate the windmill at P
to point away from Q and it will never obstruct other windmills since c ≥ 1, so we can
delete the pivot P from consideration (and use induction on the number of pivots, say).
Thus, we may assume G is a finite planar graph with no leaves. Thus it makes sense

to speak of the faces of planar graph G, consisting of several polygons.

Lemma. A windmill with pivot P can never intersect a red edge other than those
touching P .

Proof. Suppose windmill PA intersects red edge QR. Then the altitude from PH
to QR has length at most 1. WLOG that QH < RH, so QH < 1

2QR = 1. Then
PQ2 < QH2 +HP 2 < 1 + 1 = 2, contradiction.
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From now on, a windmill PA is said to hug a red edge PQ if the angle ∠QPA < ε
for some sufficiently small ε in terms of G; each red edge PQ has at most two windmills
hugging it (namely the windmills with pivots P and Q; if this happens, the windmills
are on opposite sides of PQ). Call a windmill configuration cuddly if every windmill is
hugging an edge.

Claim. We can reach some cuddly configuration from any admissible one.

Proof. Indeed, consider a windmill PA not hugging any edge, and an edge PQ, and such
that ∠APQ = θ is minimal among all such pairs. Let ∠RPQ be the corresponding angle
of the face containing PA, and let QB, RC be windmills.

If QB is hugging PQ, we perturb it slightly so that A and B are on opposite sides of
PQ; thus QB is no longer in the way.
We rotate PA towards PQ now. Because we assumed θ = ∠APQ was minimal, it is

impossible for the body of the windmill to collide with the points B or C. So the only
way it can be obstructed is if the point A collides with the interior of QB or RC.

θ
P Q

R

A

B

C

Suppose that A collided with QB. At the moment of collision, we would have to have
∠PAQ ≤ 90◦. (This is because just before the collision PA was still disjoint from QB,
and if ∠PAQ ≥ 90◦ just before then it would remain disjoint as PA rotated.) But then
PQ2 ≤ PA2 +AQ2 ≤ 2, contradiction. A similar proof works for RC.

Thus we can rotate the windmills one by one so they hug the edges, as desired.

It remains to show any two cuddly configurations can be reached from each other. For
this, we make two observations.

• Suppose PA and QB both hug PQ. We show we can interchange the two. Assume
∠RPQ is the angle of a face containing A, and ∠TPQ, ∠PQS are the angles of
the face containing B.

P

Q

S

R

T

A

B
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Rotate PA so it hugs PR (possibly perturbing the windmill at R), and then rotate
QB so it hugs QS (possibly perturbing the windmill at S). Then rotate PA so it
hugs PT , then move QB back so it hugs PQ from the other side, and rotate PA
back.

• Now suppose PA hugs PQ, and ∠RPQ is the angle of a face containing A. Then
we can rotate it so that PA hugs PR (here PA could be blocked by QB initially,
but then we perform the switching operation above).

Together these two observations finish the problem.

Remark (Michael Ren). Here is a solution achieving just c =
√
3.

Draw a disk of radius 1 + ϵ around every point in S such that the distance between
any two points in S is more than

√
3(1 + ϵ) for some ϵ > 0 that clearly exists. Note that

no three disks can intersect. Indeed, if disks centered at A, B, and C intersected, then
the circumradius of ABC is at most 1 + ϵ, which means that some two of A,B,C are at
most a distance of

√
3(1+ ϵ) apart. In light of this, for any two points A and B in S that

are a distance of at most 2 apart, draw a rhombus APBQ of length 1 + ϵ. By our work
before, all such rhombi are distinct. Furthermore, windmill collisions only happen inside
these rhombi by definition. Now, have Geoff move each of his windmills one by one to
Sasha’s windmills. If a windmill collision happens, have Geoff move the other windmill
out of the way inside the rhombus before moving the windmill by and then restore the
position of the other windmill. Hence, he can always get his windmills to coincide, as
desired.
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G1. Let ABC be an acute triangle with orthocenter H, and let P be a point on the
nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E,F ,
respectively. Suppose that the circumcircles of △EHP and △FHP intersect lines CH,
BH a second time at Q, R, respectively. Show that as P varies along the nine-point
circle of ABC, the line QR passes through a fixed point.

(Brandon Wang)

Let D denote the foot of the A-altitude, and M the midpoint of BC. We claim that
R and Q both lie on line PM . That will solve the problem (M is the fixed point).

A

B CD

E

F

H

P

M

Q

R

By angle chasing, it is not hard to show that

∡FHE = ∡FEM.

Now,
∡FPR = ∡FHR = ∡FHE = ∡FEM = ∡FPM

as desired so P , R, M are collinear. Similarly, P , Q, M are collinear, as desired.
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G2. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be
the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let X be the foot of
the altitude from O onto line PT . Prove that the midpoint of PX lies on the nine-point
circle of △ABC.

(Zack Chroman)

We present two solutions, one synthetic and by complex numbers.

A

B C

O

T

H

P
X

M

First solution (Zack Chroman) Let M be the midpoint of BC. Note that since
AP ⊥ BC and AT ⊥ AO ∥ PM , we find that P is the orthocenter of △ATM . Thus
Y = TP ∩AM satisfies ∠PYM = 90, so it lies on the 9-point circle.
It then suffices to note that the reflection X ′ of P over Y lies on the circumcircle of

(AMT ) = (TO), so ∠TX ′O = 90 =⇒ X = X ′.

Second solution (complex numbers, Evan Chen) Let Q denote the reflection of P
over M , the midpoint of BC.

Claim. We have QO ⊥ PT .

Proof. By complex numbers. We have

t =
aa(b+ c)− bc(a+ a)

aa− bc
=

a2(b+ c)− 2abc

a2 − bc

t− p =
a2(b+ c)− 2abc

a2 − bc
−
(
a+

b+ c

2

)
=

a2(12b+
1
2c− a) + (−a+ 1

2b+
1
2c)bc

a2 − bc

=
b+ c− 2a

2
· a

2 + bc

a2 − bc

q = 2 · b+ c

2
− p =

b+ c− 2a

2

Since a2+bc
a2−bc

∈ iR, the claim is proven.

Thus, QOX are collinear. By considering right triangle △PQX with midpoint M , we
conclude that MX = MP . Since the nine-point circle is the circle with diameter PM , it
passes through the midpoint of PX.
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G3. Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn’t
have a straightedge, but instead has a special compass which has the ability to draw a
circle through three distinct noncollinear points. (The center of the circle is not marked
in this process.) Additionally, Evan can mark the intersections between two objects
drawn, and can mark an arbitrary point on a given object or on the plane.

(i) Can Evan construct the reflection of A over ℓ?

(ii) Can Evan construct the foot of the altitude from A to ℓ?

(Zack Chroman)

The trick is to invert the figure around a circle centered at A of arbitrary radius. We
let ω = ℓ∗ denote the image of ℓ under this inversion. Then, under the inversion, Evan’s
compass has the following behavior:

• Evan can draw a line through two points other than A; or

• Evan can draw a circle through three points other than A.

In other words, the point A is “invisible” to Evan, but Evan otherwise has a straightedge
and the same compass.

It is clear then that the answer to (ii) is no; since the point A is invisible it’s impossible
to construct any point depending on it.

Part (i) is equivalent to showing that Evan can construct the center of ω; we give one
construction here anyways. Take any cyclic quadrilateral WXY Z inscribed in ω, and
let P = WZ ∩XY . Then the circumcircles of △PWX and △PY Z meet again at the
Miquel point M , and the second intersection of (MXZ) and (MWY ) is the center of ω.

Remark. The proof of (ii) implies that it’s actually more or less impossible in this
context to construct any point other than the reflection of A, as a function of A and ℓ.

An alternative proof of (ii) is possible by inverting around a generic point P on ℓ with
radius PA; this necessarily preserves the entire construction, but the foot from A to ℓ is
not fixed by this inversion.
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G4. Let ABCDEF be a convex hexagon inscribed in a circle Ω such that triangles
ACE and BDF have the same orthocenter. Suppose that BD and DF intersect CE
at X and Y , respectively. Show that there is a point common to Ω, the circumcircle of
DXY , and the line through A perpendicular to CE.

(Michael Ren and Vincent Huang)

We present many, many solutions. In all of them, we let H denote the common
orthocenter.

A

B

C

D

E

F

H

X Y

First solution by Simson lines (Vincent Huang) Let AH meet CE and Ω again at M
and A1, respectively, and P and Q be the projections of A1 onto BD and DF , respectively.
Note that PQ is the Simson line of A1 with respect to BDF . It is well known that this
Simson line bisects the segment between A1 and H. Hence, M lies on PQ. But P , M ,
and Q are respectively the projections of A1 onto DX, XY , and Y D, so A1 must lie on
the circumcircle of DXY , as desired.

Second solution by dual Desargues involution (Michael Ren) Let O and r be the
center and radius of Ω, respectively. Let E be the ellipse with foci O and H consisting
of the set of points P such that OP +HP = r. Note that as the reflections of H over
AC,CE,EA,BD,DF, FB lie on Ω, E is tangent to the sides of ACE and BDF . Let E
and AD meet CE at P and Q, respectively. By the dual of Desargues involution theorem
on quadrilateral ACPE with inscribed conic E , D(CE;XY ;PQ) is an involution. Hence,
the circumcircles of DCE, DXY , and DPQ are coaxial, so it suffices to show that
A1DPQ is cyclic, where A1 is the second intersection of AH and Ω. But note that A1

lies on OP , so ∠QDA1 = ∠ADA1 = π
2 − ∠OA1A = π

2 − ∠PA1A, which is the angle
between PA1 and PQ by the perpendicularity of AA1 and CE, as desired.

Third solution by angle chasing (Mihir Singhal) Let A1 be the reflection of H over
CE. Note A1 is on Ω so it suffices to show that DA1XY is cyclic. Let M be the foot of
the altitude from A to CE. Note that M is the midpoint of HA1 so since A1 is on Ω, M
must be on the nine-point circle of DBF . Let R and S be the feet of the altitudes from
F and B in DBF .
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Note MXRH and MY SH are cyclic. Moreover, M lies on the nine-point circle of
△BDF , and hence ∡SMR = 2∡SDR. Then

∡XHY = ∡XHM + ∡MHY

= ∡XRM + ∡MSY = ∡DRM + ∡MSD

= −(∡RMS + ∡SDR) = ∡SMR+ ∡RDS

= 2∡SDR+ ∡RDS = ∡SDR = ∡Y DX.

Thus ∡XA1Y = −∡XHY = ∡RDS = ∡XDY , as needed.

Fourth solution by inversion (James Lin) Let K be the second intersection of Ω and the
perpendicular from A to CE. We want to show DKXY is cyclic. We invert about H. It’s
clear that now, A′C ′E′ and B′D′F ′ share the same circumcircle Ω′ and incenter H. Note
that K maps to the midpoint MA′ of the arc C ′E′ on Ω′ not containing A′. Also note that
X ′ is the intersection of circles (HB′D′) and (HC ′E′), which are centered at midpoint
MF ′ of the arc B′D′ on Ω′ not containing F ′ and the midpoint MD′ of the arc B′F ′ on Ω′

not containing D′, respectively. Thus, X ′ is the reflection of H over MA′MF ′ . Similarly,
Y ′ is the reflection of H over MA′MB′ . Then, note that MA′X = MA′H = MA′Y . Now
we reformulate the problem by erasing A′, C ′ and E′, as the rest of the problem can be
defined without them. The reformulated statement is that if we fix B,D,F,H and vary
MA′ along Ω′, then D′MA′X ′Y ′ is always cyclic.
We proceed with directed angles. Note that ∡X ′D′MA′ = ∡X ′D′H + ∡HD′MA′ =

∡MA′MF ′F + ∡MD′MF ′MA′ = ∡MD′MF ′F . Similarly, ∡Y ′D′MA′ = MD′MB′B =
−∡MD′MF ′F = −∡X ′DMA′ , so it follows that MA′ lies on an angle bisector of ∡X ′D′Y ′.
Assume that D′MA′ and X ′Y ′ are not perpendicular. Then from MA′X ′ = MA′Y ′, it
follows that D′MA′X ′ and D′MA′Y ′ have the same circumradius, and if they don’t have
the same circumcircle, then D′MA′ and X ′Y ′ must be perpendicular, a contradiction. So
D′X ′MA′Y ′ is cyclic. Hf D′MA′ and X ′Y ′ are perpendicular, then use the new problem
formulation (without A,C and E and just varying MA′) to move MA′ by a miniscule
amount. Then D′MA′ and X ′Y ′ will not be perpendicular, so D′X ′MA′Y ′ is cyclic both
after and before moving MA′ by continuity. We are done.

Fifth solution, by complex numbers (Carl Schildkraut) Let Ω be the unit circle, and
let A = a, etc. We have that

c+ e = h− a =⇒ c+ e

ce
= h̄− 1

a
=⇒ ce =

a(h− a)

ah̄− 1
.

Let T be the second intersection of the line through A perpendicular to CE and Ω. We
see that

t = −ce

a
= − h− a

ah̄− 1
.
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We endeavor to show that DTXY is a cyclic quadrilateral. We have that

x =
ce(b+ d)− bd(c+ e)

ce− bd

=

a(b+d)(h−a)

ah̄−1
− bd(h− a)

a(h−a)

ah̄−1
− bd

= (h− a)

(
a(b+ d)− bd(ah̄− 1)

a(h− a)− bd(ah̄− 1)

)
= (h− a)

(
ab+ ad− ab− ad− abd

f + bd

ab+ ad+ af − a2 − ab− ad− abd
f + bd

)

= (h− a)

(
bd(f − a)

(af + bd)(f − a)

)
=

bd(h− a)

af + bd
.

Similarly

y =
bf(h− a)

ab+ df
.

So, we want to show that

d,− h− a

ah̄− 1
,
bd(h− a)

af + bd
,
bf(h− a)

ab+ df

are concyclic. This is equivalent to, dividing each by h− a and reciprocating,

h− a

d
, 1− ah̄, 1 +

af

bd
, 1 +

ab

df

being concyclic. This is equivalent to, subtracting 1 and multiplying by bdf ,

bf(b+ f − a),−a(bd+ bf + df), ab2, af2

being concyclic. This is equivalent to, adding abf and dividing by b+ f ,

bf,−ad, ab, af

being concyclic. However, all of these points lie on the unit circle, finishing the proof.

Sixth solution by complex numbers (Evan Chen) As usual let Ω denote the unit circle.
We immediately have

c+ e = b+ d+ f − a

and thus
1

c
+

1

e
=

c+ e

ce
=

1

b
+

1

d
+

1

f
− 1

a

=⇒ ce =
b+ f + d− a
1
b +

1
f + 1

d − 1
a

.

These two equations let us eliminate c and e, leaving only a, b, d, f .
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Now consider the point p = − ce
a on the circumcircle. We compute

x− p

b− p
=

x+ ce
a

b+ ce
a

=

bd(c+e)−ce(b+d)
bd−ce + ce

a

b+ ce
a

=
abcd+ abde− abce− adce+ bdce− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/a+ 1/e+ 1/c− 1/d− 1/b)− (ce)2

(ab+ ce)(bd− ce)

=
abcde(1/f)− (ce)2

(ab+ ce)(bd− ce)
=

(ce)(abd− cef)

f(ab+ ce)(bd− ce)

Now, we write

ab+ ce =
ab(1b +

1
f + 1

d − 1
a) + (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
ab(1d + 1

f ) + d+ f
1
b +

1
f + 1

d − 1
a

=

1
df (d+ f)(ab+ df)

1
b +

1
f + 1

d − 1
a

bd− ce =
bd(1b +

1
d + 1

f − 1
a)− (b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
bd( 1f − 1

a) + (a− f)
1
b +

1
f + 1

d − 1
a

=

1
af (a− f)(bd+ af)

1
b +

1
f + 1

d − 1
a

abd− cef = abd− f(b+ f + d− a)
1
b +

1
f + 1

d − 1
a

=
abd(1b +

1
f + 1

d − 1
a)− f(b+ f + d− a)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(abdbf − f) + b(a− d) + f(a− d)

1
b +

1
f + 1

d − 1
a

=
(b+ f)(adf − f + (a− d))

1
b +

1
f + 1

d − 1
a

=

1
f (b+ f)(a− f)(f + d)

1
b +

1
f + 1

d − 1
a

.

Putting that all together gives

x− p

b− p
=

ce · adf(b+ f)(1b +
1
f + 1

d − 1
a)

(ab+ df)(bd+ af)

which is symmetric in d and f , so the analogous calculation with y−p
f−p yields the same

result. Consequently, P is the center of the spiral similarity sending Y F to BX, as
desired.

Remark. Philosophical point: it’s necessary to use both a+ c+ e = b+ d+ f and its
conjugate, to capture two degrees of freedom.
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Seventh solution, by inversion and moving points (Anant Mudgal, unedited) Let H
be the common orthocenter. Pick any two vertices X,Y of either △ACE or △BDF and
notice that △XYH has circumradius equal to the radius of Ω. Now invert at H. We
obtain the following equivalent problem.

Let ABCDEF be a cyclic hexagon with △ACE and △BDF sharing a com-
mon incircle ω centered at point H. Let ⊙(HBD),⊙(HFD) meet ⊙(CHE)
again at points X and Y respectively. Let M be the midpoint of arc CE not
containing A. Then ⊙(DXY ) passes through point M .

Let ω touch CE at point N and L = AD∩CE. Let P = DB∩CE and Q = DF ∩CE.
By Dual of Desragues Involution Theorem on circumscribed ACEN and point D; we
conclude (DN,DL), (DC,DE), (DP,DQ) are pairs of an involution. Notice that P has
equal powers in ⊙(HBD),⊙(CHE) hence P lies on XH. Similarly, Q lies on Y H.
Let HN,HL meet ⊙(CHE) again at S, T . Project through H to conclude that

(C,E), (X,Y ), (S, T ) are pairs of an involution on the circle ⊙(CHE). Thus, we conclude
that lines CE,XY , ST concur.

Claim. CE,ST ,DM concur.

Proof. Animate D on ⊙(ACE); then D 7→ L 7→ T is projective. Let U = DM ∩CE and

V = ST ∩ CE then D 7→ U and D 7→ V are also projective. Thus to show W
def
:= U ≡ V

we need to verify for three choices of point D; namely we pick {C,E,M}. These are all
clearly true and the lemma is proved.

Finally, notice WX ·WY = WC ·WE = WD ·WM proving DXYM is cyclic.
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G5. Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The
circumcircles of △ABC and △ADO meet at P ≠ A. The circumcircle of △ABC meets
lines PE at X ̸= P and PF at Y ̸= P . Prove that XY ∥ BC.

(Daniel Hu)

Denote by Ω and H the circumcircle and orthocenter of △ABC. Let T lie on Ω such
that AT ∥ BC. Let △ABC have orthocenter H.

A

B C

O

D

E

F

P

XY

First solution, synthetic First we prove a lemma.

Claim. The points H,P, T are collinear.

Proof. Let HT meet Ω at P ∗ ̸= T . Let AD meet Ω at K ̸= A. By homothety at K,
HT ∥ DO. By angle chasing, ∠P ∗AD = ∠P ∗AK = ∠P ∗TK = ∠P ∗TO = ∠OP ∗T =
∠P ∗OD, so P ∗ lies on the circumcircle of △AOD. Therefore, P ≡ P ∗ as desired.

We now provide two finishes.

• First finish: By DDIT on AEHF , the pairs of lines (PA,PH), (PB,PC), (PE,PF )
are part of a single involution, so AT,BC,XY are concurrent. Since AT ∥ BC,
this implies that XY ∥ BC as desired.

• Second finish: Let Q = AP ∩EF . By inversion at A, BFPQ, CEPQ, DHPQ are
all cyclic. By the lemma, this implies that ∠ABC + ∠ACB = ∠APT = ∠APH =
∠QPH = ∠QDH = ∠QAH, so DQ ⊥ EF .

Let G = EF ∩ BC; since (G,D;B,C) = −1, ∠BQD = ∠DQC. Thus ∠BAY =
∠BPY = ∠BPF = ∠BQF = ∠CQE = ∠CPE = ∠CPX = ∠CAX, so XY ∥
BC as desired.
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Second solution by complex numbers (Adam Ardeishar) Let ABC be the complex
unit circle. Then D = 1

2(a+ b+ c− bc
a ), and we know

p− a

p− o
· d− o

d− a
∈ R

p− a

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=

1
p − 1

a
1
p

·
1
a + 1

b +
1
c −

a
bc

− 1
a + 1

b +
1
c −

a
bc

1

p
·
a+ b+ c− bc

a

b+ c− a− bc
a

=
−1

a
·

1
a + 1

b +
1
c −

a
bc

1
b +

1
c −

1
a − a

bc

−a

p
· a

2 + ab+ ac− bc

ab+ ac− a2 − bc
=

bc+ ab+ ab− a2

ab+ ac− bc− a2

p = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc

Now note that p+ x = e+ pxe, so x = p−e
pe−1 But we compute that

p− e = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
− 1

2
(a+ b+ c− ac

b
)

=
a3b+ a3 + 2a2b2 + a2bc+ ab3 + ab2c+ b3c+ b2c2 − a2c2

2b(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ab− ac+ bc)

2b(a2 − ab− ac− bc)

And also compute

pe− 1 = a · a
2 + ab+ ac− bc

a2 − ab− ac− bc
· 1
2
(
1

a
+

1

b
+

1

c
− b

ac
)− 1

=
a3b+ a3c+ a2bc+ a2c2 + ab2c+ 2abc2 + b3c+ b2c2 − ab3

2bc(a2 − ab− ac− bc)

=
(a+ b)(b+ c)(a2 + ac+ bc− ab)

2bc(a2 − ab− ac− bc)

So

x =

(a+b)(b+c)(a2+ab−ac+bc)
2b(a2−ab−ac−bc)

(a+b)(b+c)(a2+ac+bc−ab)
2bc(a2−ab−ac−bc)

= c · a
2 + ab+ bc− ac

a2 + ac+ bc− ab

By symmetry,

y = b · a
2 + ac+ bc− ab

a2 + ab+ bc− ac

Now note that xy = bc to finish.
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N1. Determine all nonempty finite sets S = {a1, . . . , an} of n distinct positive integers
such that a1 · · · an divides (x+ a1) · · · (x+ an) for every positive integer x.

(Ankan Bhattacharya)

Answer: {a1 . . . , an} = {1, . . . , n}. This works since

(x+ n) . . . (x+ 1)

n!
=

(
x+ n

n

)
∈ Z

so we now show that it is the only possibility. There are two approaches.

First solution Let P (x) = (x+ a1) . . . (x+ an). Then, a1 . . . an should divide the nth
finite difference of P , which is n!. But

a1 . . . an | n! =⇒ {a1 . . . , an} = {1, . . . , n}

for size reasons.

Second solution (Kevin Sun) Let s+ 1 be the smallest positive integer not in our set
A and denote B = A \ {1, . . . , s}.
It’s clear that the divisibility holds for negative x as well. Set x = −s− 1 to obtain

Z ∋ 1

a1 . . . an

∏
a∈A

(x+ a)

=
∏
a∈A

(
1 +

x

a

)
=

∏
a∈{1,...,s}

(
1− s+ 1

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
∏

a∈{1,...,s}

(
a− (s+ 1)

a

)
·
∏
b∈B

(
1− s+ 1

b

)

=
(−s)(−(s− 1)) . . . (−1)

1 · 2 · · · · · s
·
∏
b∈B

(
1− s+ 1

b

)
= (−1)|A|

∏
b∈B

(
1− s+ 1

b

)
.

If B is nonempty this has magnitude strictly between 0 and 1, (since minB > s+ 1 and
thus each term is in (0, 1)). Thus B is empty and A = {1, . . . , s}.
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N2. Call a number n good if it can be expressed in the form 2x + y2 where x and y are
nonnegative integers.

(a) Prove that there exist infinitely many sets of 4 consecutive good numbers.

(b) Find all sets of 5 consecutive good numbers.

(Michael Ma)

For (a), note that for any t, the numbers t2 + 1, t2 + 2, t2 + 4 are good. So it suffices
to show t2 + 3 is good infinitely often, that is, t2 + 3 = 2x + y2 has infinitely many
nonnegative integer solutions (since for fixed t there are finitely many (x, y)). But this
rearranges t2 − y2 = 2x − 3 which has a solution for every x.

We now turn to the laborious task of (b), determining all sets of five consecutive good
numbers. The answers are the six tuples {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {8, 9, 10, 11, 12},
{9, 10, 11, 12, 13}, {288, 289, 290, 291, 292}, {289, 290, 291, 292, 293}. These all work since

1 = 20 + 02, 2 = 20 + 12, 3 = 21 + 12,

4 = 22 + 02, 5 = 22 + 12, 6 = 21 + 22,

8 = 23 + 02, 9 = 23 + 12, 10 = 20 + 32,

11 = 21 + 32, 12 = 23 + 22, 13 = 22 + 32,

288 = 25 + 162, 289 = 26 + 152, 290 = 20 + 172,

291 = 21 + 172, 292 = 28 + 62, 293 = 22 + 172.

We now show they are the only ones. First, consider the following table which shows
2x + y2 (mod 8):

x = 0 x = 1 x = 2 x ≥ 3

y ≡ 1 (mod 2) 2 3 5 1
y ≡ 0 (mod 4) 1 2 4 0
y ≡ 2 (mod 4) 5 6 0 4

Note that from this table, no good number is 7 (mod 8). Thus any five good numbers
must have a 3 (mod 8) number. By table can only occur if that good number is of the
form t2 + 21 = t2 + 2 for an odd integer t.
We now have several cases.
Case 1: Suppose the five good numbers are {t2 + 1, t2 + 2, t2 + 3, t2 + 4, t2 + 5}.
Note that t2+5 ≡ 6 (mod 8), and by table, this can only occur if t2+5 = s2+22 = s2+4

for some integer s; hence t2 − s2 = 1, so t = 1 and s = 0. This gives the solution set
{2, 3, 4, 5, 6}.

Case 2: Suppose the five good numbers are {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4}.
Since t2 is good, we have t2 = 2w+z2 for some w and z, which we write as (t−z)(t+z) =

2w.
We now split into cases.

• Subcase 2.1: We handle the situation where w < 4.

– If w = 0, then we get t = 1, which gives the solution {1, 2, 3, 4, 5}.
– If w = 1, then there are no solutions by taking mod 4.
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– If w = 2, then t2 = 4 + z2 which implies t = 2, but t was odd.

– If w = 3, we get t2 = 8+ z2 which implies t = 3, which gives {9, 10, 11, 12, 13}.
– If w = 4, we get t2 = 16 + z2 which together with t odd implies t = 5, which

gives {25, 26, 27, 28, 29}. However, the number 28 is not good, so this is not a
solution.

• Subcase 2.2: Suppose w ≥ 5. As gcd(t − z, t + z) | 2t we must have t − z = 2,
t+ z = 2w−1, and thus t = 1

2

(
2 + 2w−1

)
= 2w−2 + 1. Since t was odd, we actually

have w ≥ 3.

But t2 + 3 is also good, so write

t2 + 3 = 2x + y2.

So we split into cases again.

– Subcase 2.2.1: We handle the case x < 3.

∗ If x = 0, we get t2 + 2 = y2 which has no solutions.

∗ If x = 1, we get t2 + 1 = y2 which implies t = 0, but t is supposed to be
odd.

∗ If x = 2, then we get t2 = y2 +1 which implies t = 1, which was an earlier
solution.

– Subcase 2.2.2: Otherwise, assume x ≥ 3.

2x + y2 = t2 + 3

=⇒ 2x + y2 =
(
2w−2 + 1

)2
+ 3

= 22w−4 + 2w−1 + 4

=⇒ 22w−6 + 2w−3 + 1 = 2x−2 + (y/2)2

since y is clearly even; the last line implies y/2 is odd, since 2w − 6 > 0,
w − 3 > 0, x− 2 > 0.

Let c = w − 3 ≥ 2, a = x− 2 ≥ 1, b = y/2 ≥ 1 for brevity; then the equation
rewrites as

22c + 2c + 1 = 2a + b2.

We rewrite this as

(2c + 1− b)(2c + 1 + b) = (2c + 1)2 − b2 = 2a + 2c ≥ 0.

In light of this, we have 2a + 2c ≥ (2c + 1)2 − 22c > 2c+1, so 2a > 2c, ergo
a > c. Thus we may further write

(2c + 1− b)(2c + 1 + b) = 2c(2a−c + 1).

The factors on the left-hand side are nonnegative and have gcd dividing 2b,
hence one of them has at most one factor of 2. So one of the factors must be
divisible by 2c−1. Thus, b ≡ ±1 (mod 2c−1).

But, b < 2c + 1. So we have four possibilities:

∗ Subcase 2.2.2.1: suppose b = 1. Then we get 22c + 2c = 2a, which is
impossible.
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∗ Subcase 2.2.2.2: suppose b = 2c−1 − 1. Then we get (2c−1 + 2)(2c +
2c−1) = 2c(2a−c + 1) and hence 3 · 2c−2 = 2a−c − 2. This implies a− c = 3
and c− 2 = 1, so c = 3, or w = 6, hence t = 2w−2 + 1 = 17.

This gives {289, 290, 291, 292, 293} which indeed works.

∗ Subcase 2.2.2.3: suppose b = 2c−1+1. Then we get 2c−1(2c+2c−1+2) =
2c(2a−c + 1), or 2c−1 + 2c−2 + 1 = 2a−c + 1, which is impossible.

∗ Subcase 2.2.2.4: suppose b = 2c − 1. This gives 2 · 2c+1 = 2c(2a−c + 1),
which is impossible.

Case 3: Suppose the five good numbers are {t2 − 1, t2, t2 + 1, t2 + 2, t2 + 3}.
In that case, {t2, t2 + 1, t2 + 2, t2 + 3, t2 + 4} is also a set of five consecutive good

numbers. Using case 2, the new candidate this now gives are {8, 9, 10, 11, 12} and
{288, 289, 290, 291, 292}, which work.
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N3. Let a1, a2, . . . be an infinite sequence of positive integers satisfying a1 = 1 and

an | ak + ak+1 + · · ·+ ak+n−1

for all positive integers k and n. Find the maximum possible value of a2018.

(Krit Boonsiriseth)

The answer is a2018 ≤ 21009 − 1. To see this is attainable, consider the sequence

an =

{
1 n odd

2n/2 − 1 n even.

This can be checked to work, so we prove it’s optimal.
We have a2 | a1 + a2 = 1 + a2 =⇒ a2 = 1.
Now consider an integer n, and let s = sn = a1 + · · ·+ an. Then

an+1 | s
an+2 | s+ an+1

an+2 ≡ 1 (mod an+1).

Thus, gcd(an+2, an+1) = 1. So an+2 ≤ s+an+1

an+1
, and thus

an+1 + an+2 ≤ 1 + an+1 +
s

an+2
≤ s+ 2.

So, we have

a1 + a2 = 2

a3 + a4 ≤ 2 + 2 = 4

a5 + a6 ≤ (2 + 4) + 2 = 8

a7 + a8 ≤ (2 + 4 + 8) + 2 = 16

...

a2017 + a2018 ≤ 21009.

Thus a2018 ≤ 21009 − a2017 ≤ 21009 − 1.

Remark (Motivational notes). It’s very quick to notice an+1 | a1+ · · ·+an, which already
means that given the first n terms of the sequence there are finitely many possibilities
for the next one. Thus it’s possible to play with “small cases” by drawing a large tree.

When doing so, one might hope that somehow an = a1 + · · ·+ an−1 is achievable, but
quickly notices in such a tree that if an is the sum of all previous terms, then an+1 = 1 is
forced. This gives the idea to try to look at the terms in pairs, rather than one at a time,
and this gives the correct bound.

As for extracting the equality case from this argument, there are actually two natural
curves to try. We have a3 | 1+1 = 2. If we have a3 = 2 we get a4 = 1, a5 ≤ 5, but then a6
actually gets stuck. But if we have a3 = 1 instead, we get a4 = 3, a5 = 1, a6 = 7, and so
on; pushing this gives the equality case above, seen to work. I think it’s quite unnatural
to guess the correct construction before having the corresponding s+ 2 estimate.
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N4. Fix a positive integer n > 1. We say a nonempty subset S of {0, 1, . . . , n− 1} is
d-coverable if there exists a polynomial P with integer coefficients and degree at most d,
such that S is exactly the set of residues modulo n that P attains as it ranges over the
integers.

For each n, determine the smallest d such that any nonempty subset of {0, . . . , n− 1}
is d-coverable, or prove that no such d exists.

(Carl Schildkraut)

This is possible for n = 4 or n prime, in which case d = n − 1 is best possible. Let
P (Z/n) denote the range of a polynomial modulo n.

• We first note that if n = q1 . . . qk is the product of k ≥ 2 distinct prime powers,
then

|P (Z/n)| =
k∏

i=1

|P (Z/qi)|.

Hence any subset S with size n− 1 is not coverable.

• If n = pe is a prime power with other than 4 with e ≥ 2, consider the set
S = {0, 1, . . . , p− 1, p}. We claim it is not coverable.

Indeed, if P covers it, WLOG P (0) = 0. Now, P is surjective modulo p, hence
bijective, and thus P (x) ≡ 0 (mod p) ⇐⇒ x ≡ 0 (mod p). Now we can write

P (x) = a1x+ a2x
2 + . . . .

– If a1 ≡ 0 (mod p), then x ≡ 0 (mod p) =⇒ P (x) ≡ 0 (mod p2), so p does
not appear in the image.

– If a1 ̸≡ 0 (mod p), then p, 2p, . . . all appear in the image, which is wrong for
n > 4.

• Let n = 4, and consider S (mod 4).

– If S = {k} take P (x) = k.

– If S = {k, k + 1} take P (x) = x2 + k.

– If S = {k, k + 2} take P (x) = 2x2 + k.

– If S = {k − 1, k, k + 1} take P (x) = x3 + k.

We claim also the example S = {−1, 0, 1} is not 2-coverable. Indeed, WLOG
P (0) = 0 so P (x) = x(x+ c). Then P (2) ≡ 0 (mod 4), meaning c is even. But
then P (1) ≡ c+ 1 (mod 4) and P (−1) ≡ 1− c (mod 4), so P (1) ≡ P (−1).

– If S = {0, 1, 2, 3} take P (x) = x.

• Let n = 2.

– If S = {k} take P (x) = k.

– If S = {0, 1} take P (x) = x. This is obviously not 0-coverable.
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• If n = p is an odd prime, we claim S = {1, . . . , p − 1} is not (p − 2)-coverable.
Indeed, suppose P (x) = ap−2x

p−2 + · · ·+ a0 covered it. Then∑
x

P (x) ≡
∑
k

ak
∑
x

xk ≡ 0 (mod p).

However, if P (Z/p) = {1, . . . , p − 1} then some element appears twice and the
others appear once. If k is the repeated element though, then

∑
x P (x) = (1+ · · ·+

(p− 1)) + k ≡ k ̸≡ 0 (mod p).
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