Problem 1. Let a_1, a_2, \ldots, a_n be positive integers with product P, where n is an odd positive integer. Prove that
\[
gcd(a_1^n + P, a_2^n + P, \ldots, a_n^n + P) \leq 2 \gcd(a_1, \ldots, a_n)^n.
\]

Problem 2. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC. Suppose that P and Q are distinct points on the circle with diameter AH, different from A, such that M lies on line PQ. Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC$.

Problem 3. nicky is drawing kappas in the cells of a square grid. However, he does not want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all real numbers $d > 0$ such that for every positive integer n, nicky can label at least dn^2 cells of an $n \times n$ square.

Time limit: 4 hours 30 minutes.
Each problem is worth 7 points.
Problem 4. An integer \(n > 2 \) is called tasty if for every ordered pair of positive integers \((a, b)\) with \(a + b = n \), at least one of \(\frac{a}{b} \) and \(\frac{b}{a} \) is a terminating decimal. Do there exist infinitely many tasty integers?

Problem 5. The edges of \(K_{2017} \) are each labelled with 1, 2, or 3 such that any triangle has sum of labels at least 5. Determine the minimum possible average of all \(\binom{2017}{2} \) labels.

(Here \(K_{2017} \) is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.)

Problem 6. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) such that for all real numbers \(a, b, \) and \(c \):

(i) If \(a + b + c \geq 0 \) then \(f(a^3) + f(b^3) + f(c^3) \geq 3f(abc) \).

(ii) If \(a + b + c \leq 0 \) then \(f(a^3) + f(b^3) + f(c^3) \leq 3f(abc) \).