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OFFICIAL SOLUTIONS

1. Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct
real numbers a and b.)

Proposed by Evan Chen.

Answer. For all real numbers x, f(x) = g(x) = h(x) = x + C, where C is an arbitrary real
number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0,
we can get that f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y−f(y)−(b+2c) is constant, so that y−f(y) is constant.
Thus, f is linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get
2a = b+ c, 2b = c+ a and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real. One
can easily verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. Although it may look intimidating, this is not a very hard problem. The basic idea
is to view f(0), g(0) and h(0) as constants, and write the first equation entirely in terms of
f(x), much like we would attempt to eliminate variables in a standard system of equations.
At this point we still had two degrees of freedom, x and y, so it seems likely that the result
would be easy to solve. Indeed, we simply select x in such a way that two of the terms cancel,
and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives
g(f(a)) + h(b) = g(f(b)) + h(a) =⇒ g(f(a))− h(a) = g(f(b))− h(b). So g(f(x)) = h(x) + a1
for a constant a1. Similarly, h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.
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Now, we will show that h(h(x))− f(x) and h(h(x))− g(x) are both constant. For the second,
just plug in x = 0 to the third equation. For the first, let x = a3, y = k in the original to get
g(f(h(k))) = h(a3) + f(k). But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is
constant as desired.

Now f(x) − g(x) is constant, and by symmetry g(x) − h(x) is also constant. Now let g(x) =
f(x) + p, h(x) = f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q

Now plugging in (x, y) and (y, x) into the first one gives f(x + f(y)) = f(y + f(x)) =⇒
f(x)−x = f(y)−y from injectivity, f(x) = x+c. Plugging this in gives 2p = q, 2q = p, p+q = 0
so p = q = 0 and f(x) = x+c, g(x) = x+c, h(x) = x+c for a constant c are the only solutions.
�

This second solution was suggested by David Stoner.

Solution 3. By putting (x, y) = (0, a) we derive that f(f(a)) = g(0) + h(a) for each a, and
the analogous counterparts for g and h. Thus we can derive from (x, y) = (t, g(t)) that

h(f(t) + h(g(t))) = f(f(t)) + g(g(t))

= g(0) + h(t) + h(0) + f(t)

= f(f(0)) + g(t+ g(t))

= h(f(0) + h(t+ g(t)))

holds for all t. Thus by injectivity of h we derive that

f(x) + h(g(x)) = f(0) + h(x+ g(x)) (∗)

holds for every x.

Now observe that placing (x, y) = (g(a), a) gives

g(2g(a)) = g(g(a) + g(a)) = h(g(a)) + f(a)

while placing (x, y) = (g(a) + a, 0) gives

g(g(a) + a+ g(0)) = h(a+ g(a)) + f(0).

Equating this via (∗) and applying injectivity of g again, we find that

2g(a) = g(a) + a+ g(0)

for each a, whence g(x) = x+ b for some real number b. We can now proceed as in the earlier
solutions. �

This third solution was suggested by Mehtaab Sawhney.

Solution 4. In the first given, let x = a+ g(0) and y = b to obtain

f(a+ g(0) + f(b)) = g(a+ g(0)) + h(b) = h(a) + h(b) + f(0).

Swapping the roles of a and b, we discover that

f(b+ g(0) + f(a)) = f(a+ g(0) + f(b)).

But f is injective; this implies f(x)− x is constant, and we can the proceed as in the previous
solutions. �

This fourth solution was suggested by alibez.
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2. Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a
positive integer. Prove that each integer greater than 2 can be expressed as the sum of pairwise
distinct beautiful numbers.

Proposed by Matthew Babbitt.

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 +
· · ·+ an. Then for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show
that a0 − (a1 + · · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong
induction on N . The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one
of the inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with
3 ≤ N ′ < N and then apply the inductive hypothesis; the construction for N ′ cannot use any
of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely
natural, it is not immediately obvious that one should consider 3 ≤ N−(x1+ · · ·+xk) < xk+3
rather than the stronger bound 3 ≤ N−(x1+· · ·+xk) < xk. In particular, the solution method
above does not work if one attempts to get the latter.

3. We say a finite set S of points in the plane is very if for every point X in S, there exists an
inversion with center X mapping every point in S other than X to another point in S (possibly
the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very
set S of size n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point
P ′ along ray OP such that OP ·OP ′ = r2.)

Proposed by Sammy Luo.

Answer. For part (b), the maximal size is 5.
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Solution. For part (a), take a regular (n+1)-gon and number the vertices Ai (i = 0, 1, 2, . . . , n)
Now invert the polygon with center A0 with arbitrary power. This gives a very set of size n.
(This can be easy checked with angle chase, PoP, etc.) By scaling and translation, this shows
the existence of a very set as in part (a).

It remains to prove uniqueness. Suppose pointsA = P1, P2, . . . , Pn = B andA = X1, X2, . . . , Xn =
B are two very sets on AB in that order. Assume without loss of generality that X1X2 > P1P2.
Then X2X

2
1 = X2X3 · (X1Xn −X1X2) =⇒ X2X3 > P2P3. Proceeding inductively, we find

XkXk+1 > PkPk+1 for k = 1, 2, . . . , n− 1. Thus, X1Xn > P1Pn, which is a contradiction.

For (b), let P (A) (let’s call this power, A is a point in space) be a function returning the
radius of inversion with center A. Note that the power of endpoints of 1D very sets are equal,
and these powers are the highest out of all points in the very set. Let the convex hull of our
very set be H. Let the vertices be A1, A2, ..., Am. (We have m ≥ 3 since the points are not
collinear.) Since A1, A2 are endpoints of a 1D very set, they have equal power. Going around
the hull, all vertices have equal power.

Lemma 2. Other than the vertices, no other points lie on the edges of H, and H is equilateral.

Proof. Say X is on A1A2. Then X,A3 are on opposite ends of a 1D very set, so they have
equal power. Then P (X) = P (A1) = P (A2) contradicting the fact the endpoints have the
unique highest power. Therefore, since all sides only have 2 points on them, and all vertices
have equal power, all sides are equal.

Lemma 3. H is a regular polygon.

Proof. Let’s look at the segment A1A3. Say that on it we have a very set of size k − 1. By
uniqueness and the construction in (a), and the fact that P (A1) = P (A2) = P (A3), we get
that A1, A2, A3 are 3 vertices of a regular k-gon. Now the very set on segment A1A3 under
inversion at A2 would map to a regular k-gon. So all vertices of this regular k-gon would be
in our set. Assuming that not all angles are equal taking the largest angle who is adjacent to
a smaller angle, we contradict convexity. So all angles are equal. Combining this with Lemma
1, H is a regular polygon.

Lemma 4. H cannot have more than 4 vertices.

Proof. Firstly, note that no points can be strictly any of the triangles AiAi+1Ai+2. (*) Or
else, inverting with center Ai+1 we get a point outside H. First, let’s do if m (number of
vertices) is odd. Let m = 2k+1. (k ≥ 2) Look at the inversive image of A2k+1 under inversion
with center A2. Say it maps to X. Note that P (X) < P (Ai) for any i. Now look at the line
Ak+2X. Since Ak+2 is an endpoint, but P (X) < P (Ak+2), the other endpoint of this 1D very
set must be on ray Ak+2X past X, contradicting (*), since no other vertices of H are on this
ray. Similarly for m even and ≥ 6 we can also find 2 points like these who contain no other
vertices in H on the line through them.

Lemma 5. We only have 2 distinct very sets in 2D (up to scaling), an equilateral triangle
(when n = 3) and a square with its center (when n = 5).

Proof. First if H has 3 points, then by (*) in Lemma 3, no other points can lie inside H. So
we get an equilateral triangle. If H has 4 points, then by (*) in Lemma 3, the only other point
that we can add into our set is the center of the square. This also must be added, and this
gives a very set of size 5.

Hence, the maximal size is 5. �

This problem was proposed by Sammy Luo. This solution was given by Yang Liu.
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4. Let n be a positive integer and let a1, a2, . . . , an be real numbers strictly between 0 and 1.
For any subset S of {1, 2, . . . , n}, define

f(S) =
∏
i∈S

ai ·
∏
j 6∈S

(1− aj).

Suppose that
∑
|S| odd f(S) = 1

2 . Prove that ak = 1
2 for some k. (Here the sum ranges over all

subsets of {1, 2, . . . , n} with an odd number of elements.)

Proposed by Kevin Sun.

Solution. Let X =
∑
|S| odd f(S). Consider n unfair coins which shows heads with probabil-

ities a1, a2, . . . , an. Observe that X computes the probability that an odd number of heads
is obtained. Thus, it is clear that if ak = 1

2 for some k, then X = 1
2 .

Consequently X − 1
2 is divisible by the polynomial

∏n
i=1

(
ai − 1

2

)
. Since both are degree n,

they must be equal up to scaling. Thus the conclusion follows. �

This problem and solution were proposed by Kevin Sun.

5. Let ABC be a triangle with circumcenter O and orthocenter H. Let ω1 and ω2 denote the
circumcircles of triangles BOC and BHC, respectively. Suppose the circle with diameter AO
intersects ω1 again at M , and line AM intersects ω1 again at X. Similarly, suppose the circle
with diameter AH intersects ω2 again at N , and line AN intersects ω2 again at Y . Prove that
lines MN and XY are parallel.

Proposed by Sammy Luo.

Remark. Originally, the problem was phrased with respect to arbitrary isogonal conjugates
in place of O and H. The modified version admits additional properties. In this version, X is
the intersection of the tangents at B and C, while Y is the reflection of A across the midpoint
of BC.

Solution 1.

Since ∠PMX = ∠QNY = π
2 , we derive

∠PBX = ∠QBY = ∠PCX = ∠QCY =
π

2
.

Thus
∠ABY =

π

2
+ ∠ABQ = ∠PBC +

π

2
= π − ∠CBX,

so X and Y are isogonal with respect to ∠B. However, similar angle chasing gives that they
are isogonal with respect to ∠C. Thus they are isogonal conjugates with respect to ABC. (In
particular, ∠BAY = ∠XAC.)

Also, ∠ABY = π − ∠CBX = π − ∠CMX = ∠AMC; hence 4ABY ∼ 4AMC. Similarly,
4ABN ∼ 4AXC. Thus AN

AB = AC
AX , and AB

AY = AM
AC . Multiplying, we get that AN

AY = AM
AX

which implies the conclusion. �

This first solution was suggested by Kevin Sun.

Remark. The points M and N are also isogonal conjugates.

Solution 2. We apply barycentric coordinates with respect to triangle ABC (and as usual
we apply Conway’s Notation). Remark that the circle with diameter AO is the circumcircle
of A = (1, 0, 0) and the midpoints MB = (1 : 0 : 1) and MC = (1 : 1 : 0). Similarly,
the circle with diameter AH is the circumcircle of A = (1, 0, 0) and the feet of the altitudes
KB = (SC : 0 : SA) and KC = (SB : SA : 0). It is then straightforward to derive the following
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A

B C

O

H

M

N

X

Y

equations (using the standard formulas 2(SAB + SBC + SCA) = a2SA + b2SB + c2SC = 16K2,
where K is the area of ABC.)

(AMBMC) : a2yz + bzx+ c2xy = (x+ y + z)

(
1

2
c2y +

1

2
b2z

)
(AKBKC) : a2yz + bzx+ c2xy = (x+ y + z)

(
SBc

2y + SCz
)

(BOC) : a2yz + bzx+ c2xy = (x+ y + z)

(
b2c2

2SA
x

)
(BHC) : a2yz + bzx+ c2xy = (x+ y + z) (2Sax)

It is now straightforward to check M = (2SA : b2 : c2) and N = (a2 : 2SA : 2SA) are
the coordinates of M and N (by checking that they lie on the respective required circles).
Therefore AM is a symmedian, whence it is clear that the intersection of the two tangents
X = (−a2 : b2 : c2) is the correct form for X (one can also verify directly that this lies on
(BOC)). Analogously we find Y = (−1 : 1 : 1) follows from AN being a median (and again
this can also be verified using coordinates only).

It remains to prove that MN and XY are parallel. By normalizing and comparing the x-
coordinates, we find that

AM

AX
=

1− 2SA

2SA+b2+c2

1− −a2
−a2+b2+c2

=
−a2 + b2 + c2

−a2 + 2b2 + 2c2

and

AN

NX
=

1− a2

a2+4SA

1− (−1)
=

2SA
a2 + 4SA

=
−a2 + b2 + c2

−a2 + 2b2 + 2c2

and we are done. �

This second solution was suggested by Sam Korsky.
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Remark. This solution is clearly back-constructed. If the points (and hence coordinates of) X
and Y are predicted from a well-drawn diagram, then one can use single linear computations to
obtain the points M and N (as opposed to quadratics). Simply parametrize M as (t : b2 : c2)
and then consider the radical axis of (AOM) and (BOC), obtained by merely subtracting the
two circle’s equations.

Solution 3. First, remark that OX is a diameter of (BOC), meaning X is the intersection
of the tangents to (ABC) at B and C. In particular AX is a symmedian. Next, notice that
HY is a diameter of (BHC), meaning Y is the reflection of A over the midpoint of BC. In
particular AX is a median.

Now we claim that (AMB) and (AMC) are tangent to AC and AB, respectively. This follows
from angle chasing via

∠ABM = ∠B − ∠MBC = ∠B − ∠MXC = · · · = ∠MAC.

Similarly, we claim that (ANB) and (ANC) are both tangent to BC. This just follows from

∠BAN = ∠NY C = ∠NBC.

Now invert at A with radius
√
AB ·AC and then reflect around the angle bisector of A. This

map sends B to C. Using the tangencies above, we see that M is mapped to Y and N is
mapped to X, so AM ·AX = AN ·AY = AB ·AC and the conclusion follows. �

This third solution was suggested by Michael Ren.

This problem was proposed by Sammy Luo.

6. A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one
or more snakes on the plane, each of whose heads splits at some points but never comes back
together. In other words, for every positive integer n greater than 2, there do not exist pairwise
distinct black squares s1, s2, . . . , sn such that si and si+1 share an edge for i = 1, 2, . . . , n
(here sn+1 = s1).

What is the maximum possible number of filled black squares?

Proposed by David Yang.

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n + 1) − 1. In this

particular instance, m = 2014 and n = 22014 + 1.

Solution 1. Let n = 2m+1. Double-counting square edges yields 3v+1 ≤ 4v−e ≤ 2n(n+1),
so because n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved
iff (a) the graph formed by black squares is a connected forest (i.e. a tree) and (b) all but two
square edges belong to at least one black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an
“H-shape” (so if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is
black); call this G1. To go from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in
Gm, and fill in (x, y) with x, y not both even iff x + y is odd (so iff one of x, y is odd and
the other is even). Each “newly-created” white square has both coordinates odd, and thus
borders 4 (newly-created) black squares. In particular, there are no new white squares on the
border (we only have the original two from G1). Furthermore, no two white squares share an
edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b).
To check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff
(x1, y1) and (x2, y2) are black squares (and thus connected) in Gm (the new black squares are
essentially just “bridges”). Indeed, every path in Gm+1 alternates between coordinates with
odd and even sum, or equivalently, new and old black squares. But two black squares (x1, y1)
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and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2) is black and adjacent to (2x1, 2y1) and
(2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is clear: the set of old black
squares must remain connected in Gm+1, and all new black squares (including those on the
boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a
cycle in Gm by removing the new black squares from a cycle in Gm+1 (as every other square
in a cycle would have to have odd coordinate sum). �

This problem and solution were proposed by David Yang.

Solution 2. As above, we can show that there are at most 2
3n(n+ 1)− 1 black squares. We

provide a different construction now for n = 2k + 1.

Consider the grid as a coordinate plane (x, y) where 0 ≤ x, y ≤ 2m. Color white the any square
(x, y) for which there exists a positive integer k with x ≡ y ≡ 2k−1 (mod 2)k. Then, color
white the square (0, 0). Color the remaining squares black. Some calculations show that this
is a valid construction which achieves 2

3n(n+ 1)− 1. �

This second solution was suggested by Kevin Sun.

Solution 3. We can achieve the bound of 2
3n(n + 1) − 1 as above. We will now give a

construction which works for all n = 6k + 5. Let M = 3k + 2.

Consider the board as points (x, y) where −M ≤ x, y ≤ M . Paint white the following types
of squares:

• The origin (0, 0) and the corner (M,M).

• Squares of the form (±a, 0) and (0,±a), where a 6≡ 1 (mod 3) and 0 < a < M .

• Any square (±x,±y) such that y − x ≡ 0 (mod 3) and 0 < x, y < M .

Paint black the remaining squares. This yields the desired construction. �

This third solution was suggested by Ashwin Sah.
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