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Algebra

A1
A1

In a non-obtuse triangle ABC, prove that

sinA sinB

sinC
+

sinB sinC

sinA
+

sinC sinA

sinB
≥ 5

2
.

Ryan Alweiss

A2
A2

Given positive reals a, b, c, p, q satisfying abc = 1 and p ≥ q, prove that

p
(
a2 + b2 + c2

)
+ q

(
1

a
+

1

b
+

1

c

)
≥ (p+ q)(a+ b+ c).

AJ Dennis

A3
A3

Let a, b, c, d, e, f be positive real numbers. Given that def + de+ ef + fd = 4, show that

((a+ b)de+ (b+ c)ef + (c+ a)fd)2 ≥ 12(abde+ bcef + cafd).

Allen Liu

A4
A4

Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct real numbers
a and b.)

Evan Chen
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A5
A5

Let R∗ denote the set of nonzero reals. Find all functions f : R∗ → R∗ satisfying

f(x2 + y) + 1 = f(x2 + 1) +
f(xy)

f(x)

for all x, y ∈ R∗ with x2 + y 6= 0.

Ryan Alweiss

A6
A6

Let a, b, c be positive reals such that a+ b+ c = ab+ bc+ ca. Prove that

(a+ b)ab−bc(b+ c)bc−ca(c+ a)ca−ab ≥ acababcbc.

Sammy Luo

A7
A7

Find all positive integers n with n ≥ 2 such that the polynomial

P (a1, a2, . . . , an) = an1 + an2 + . . .+ ann − na1a2 . . . an

in the n variables a1, a2, . . . , an is irreducible over the real numbers, i.e. it cannot be factored as the product
of two nonconstant polynomials with real coefficients.

Yang Liu

A8
A8

Let a, b, c be positive reals with a2014 + b2014 + c2014 + abc = 4. Prove that

a2013 + b2013 − c
c2013

+
b2013 + c2013 − a

a2013
+
c2013 + a2013 − b

b2013
≥ a2012 + b2012 + c2012.

David Stoner

A9
A9

Let a, b, c be positive reals. Prove that√
a2(bc+ a2)

b2 + c2
+

√
b2(ca+ b2)

c2 + a2
+

√
c2(ab+ c2)

a2 + b2
≥ a+ b+ c.

Robin Park
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Combinatorics

C1
C1

You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the
following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.

2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead
ends up.

3. Do either of the above, switching the roles of the words “magenta” and “left” with those of “yellow”
and “right”, respectively.

4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, ap-
pearing somewhere in the circle, and swap the orders of each pair.

5. Remove four consecutive beads of one color.

Starting with the circle: “yellow, yellow, magenta, magenta, cyan, cyan, cyan”, determine whether or not
you can reach a) “yellow, magenta, yellow, magenta, cyan, cyan, cyan”, b) “cyan, yellow, cyan, magenta,
cyan”, c) “magenta, magenta, cyan, cyan, cyan”, d) “yellow, cyan, cyan, cyan”.

Sammy Luo

C2
C2

A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words, for
every positive integer n greater than 2, there do not exist pairwise distinct black squares s1, s2, . . . , sn such
that si and si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1).

What is the maximum possible number of filled black squares?

David Yang

C3
C3

We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with
center X mapping every point in S other than X to another point in S (possibly the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very set S of size
n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point P ′ along ray
OP such that OP ·OP ′ = r2.)

Sammy Luo

9

http://www.aops.com/Forum/viewtopic.php?t=541844
http://www.aops.com/Forum/viewtopic.php?t=524078
http://www.aops.com/Forum/viewtopic.php?t=549542


Combinatorics Problem Shortlist ELMO 2014

C4
C4

Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red
and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red
block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every
b years,

(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever
fall at exactly the same time. Consider a period of rb years in which the column is initially empty.
Determine, in terms of r and b, the number of blocks in the column at the end.

(b) Now suppose r and b are relatively prime and r + b is odd. At time t = 0, the column is initially
empty. Suppose a red block falls at times t = r, 2r, . . . , (b − 1)r years, while a blue block falls at
times t = b, 2b, . . . , (r − 1)b years. Prove that at time t = rb, the number of blocks in the column is
|1 + 2(r − 1)(b+ r)− 8S|, where

S =

⌊
2r

r + b

⌋
+

⌊
4r

r + b

⌋
+ . . .+

⌊
(r + b− 1)r

r + b

⌋
.

Sammy Luo

C5
C5

Let n be a positive integer. For any k, denote by ak the number of permutations of {1, 2, . . . , n} with
exactly k disjoint cycles. (For example, if n = 3 then a2 = 3 since (1)(23), (2)(31), (3)(12) are the only such
permutations.) Evaluate

ann
n + an−1n

n−1 + · · ·+ a1n.

Sammy Luo

C6
C6

Let f0 be the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each positive
integer m, let fm(x, y) be the remainder when

fm−1(x, y) +

1∑
j=−1

1∑
k=−1

fm−1(x+ j, y + k)

is divided by 2. Finally, for each nonnegative integer n, let an denote the number of pairs (x, y) such that
fn(x, y) = 1. Find a closed form for an.

Bobby Shen
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Geometry

G1
G1

Let ABC be a triangle with symmedian point K. Select a point A1 on line BC such that the lines AB, AC,
A1K and BC are the sides of a cyclic quadrilateral. Define B1 and C1 similarly. Prove that A1, B1, and C1

are collinear.

Sammy Luo

G2
G2

ABCD is a cyclic quadrilateral inscribed in the circle ω. Let AB ∩ CD = E, AD ∩ BC = F . Let ω1, ω2

be the circumcircles of AEF,CEF , respectively. Let ω ∩ ω1 = G, ω ∩ ω2 = H. Show that AC,BD,GH are
concurrent.

Yang Liu

G3
G3

Let A1A2A3 · · ·A2013 be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon,
there exists a point Q 6= P such that AiP

AiQ
is constant for i ∈ {1, 2, 3, · · · , 2013}.

Robin Park

G4
G4

Let ABCD be a quadrilateral inscribed in circle ω. Define E = AA ∩ CD, F = AA ∩ BC, G = BE ∩ ω,
H = BE ∩AD, I = DF ∩ω, and J = DF ∩AB. Prove that GI, HJ , and the B-symmedian are concurrent.

Robin Park

G5
G5

Let P be a point in the interior of an acute triangle ABC, and let Q be its isogonal conjugate. Denote by
ωP and ωQ the circumcircles of triangles BPC and BQC, respectively. Suppose the circle with diameter
AP intersects ωP again at M , and line AM intersects ωP again at X. Similarly, suppose the circle with
diameter AQ intersects ωQ again at N , and line AN intersects ωQ again at Y .

Prove that lines MN and XY are parallel. (Here, the points P and Q are isogonal conjugates with respect to
4ABC if the internal angle bisectors of ∠BAC, ∠CBA, and ∠ACB also bisect the angles ∠PAQ, ∠PBQ,
and ∠PCQ, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Sammy Luo
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G6
G6

Let ABCD be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles AOB and COD
meet again at G, while the circumcircles of triangles AOD and BOC meet again at H. Let ω1 denote
the circle passing through G as well as the feet of the perpendiculars from G to AB and CD. Define ω2

analogously as the circle passing through H and the feet of the perpendiculars from H to BC and DA. Show
that the midpoint of GH lies on the radical axis of ω1 and ω2.

Yang Liu

G7
G7

Let ABC be a triangle inscribed in circle ω with center O; let ωA be its A-mixtilinear incircle, ωB be its
B-mixtilinear incircle, ωC be its C-mixtilinear incircle, and X be the radical center of ωA, ωB , ωC . Let A′, B′,
C ′ be the points at which ωA, ωB , ωC are tangent to ω. Prove that AA′, BB′, CC ′ and OX are concurrent.

Robin Park

G8
G8

In triangle ABC with incenter I and circumcenterO, let A′, B′, C ′ be the points of tangency of its circumcircle
with its A,B,C-mixtilinear circles, respectively. Let ωA be the circle through A′ that is tangent to AI at
I, and define ωB , ωC similarly. Prove that ωA, ωB , ωC have a common point X other than I, and that
∠AXO = ∠OXA′.

Sammy Luo

G9
G9

Let P be a point inside a triangle ABC such that ∠PAC = ∠PCB. Let the projections of P onto BC, CA,
and AB be X,Y, Z respectively. Let O be the circumcenter of 4XY Z, H be the foot of the altitude from
B to AC, N be the midpoint of AC, and T be the point such that TY PO is a parallelogram. Show that
4THN is similar to 4PBC.

Sammy Luo

G10
G10

We are given triangles ABC and DEF such that D ∈ BC,E ∈ CA,F ∈ AB, AD ⊥ EF,BE ⊥ FD,CF ⊥
DE. Let the circumcenter of DEF be O, and let the circumcircle of DEF intersect BC,CA,AB again at
R,S, T respectively. Prove that the perpendiculars to BC,CA,AB through D,E, F respectively intersect at
a point X, and the lines AR,BS,CT intersect at a point Y , such that O,X, Y are collinear.

Sammy Luo
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G11
G11

Let ABC be a triangle with circumcenter O. Let P be a point inside ABC, so let the points D,E, F be on
BC,AC,AB respectively so that the Miquel point of DEF with respect to ABC is P . Let the reflections
of D,E, F over the midpoints of the sides that they lie on be R,S, T . Let the Miquel point of RST with
respect to the triangle ABC be Q. Show that OP = OQ.

Yang Liu

G12
G12

Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

G13
G13

Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner
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Number Theory Problem Shortlist ELMO 2014

Number Theory

N1
N1

Does there exist a strictly increasing infinite sequence of perfect squares a1, a2, a3, ... such that for all k ∈ Z+

we have that 13k|ak + 1?

Jesse Zhang

N2
N2

Define the Fibanocci sequence recursively by F1 = 1, F2 = 1 and Fi+2 = Fi + Fi+1 for all i. Prove that for
all integers b, c > 1, there exists an integer n such that the sum of the digits of Fn when written in base b is
greater than c.

Ryan Alweiss

N3
N3

Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a
polynomial P , of degree n and with rational coefficients, such that the following property holds: exactly one
of

P (k)

tk
and

P (k)

tk+1

is an integer for each k = 0, 1, ...,m.

Michael Kural

N4
N4

Let N denote the set of positive integers, and for a function f , let fk(n) denote the function f applied k
times. Call a function f : N→ N saturated if

ff
f(n)(n)(n) = n

for every positive integer n. Find all positive integers m for which the following holds: every saturated
function f satisfies f2014(m) = m.

Evan Chen

N5
N5

Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a positive integer.
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.

Matthew Babbitt
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N6
N6

Show that the numerator of

2p−1

p+ 1
−

(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
is a multiple of p3 for any odd prime p.

Yang Liu

N7
N7

Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then
n+ c divides an + bn + n.

Evan Chen

N8
N8

Let N denote the set of positive integers. Find all functions f : N→ N such that:

(i) The greatest common divisor of the sequence f(1), f(2), . . . is 1.

(ii) For all sufficiently large integers n, we have f(n) 6= 1 and

f(a)n | f(a+ b)a
n−1

− f(b)a
n−1

for all positive integers a and b.

Yang Liu

N9
N9

Let d be a positive integer and let ε be any positive real. Prove that for all sufficiently large primes p with
gcd(p− 1, d) 6= 1, there exists an positive integer less than pr which is not a dth power modulo p, where r is
defined by

log r = ε− 1

gcd(d, p− 1)
.

Shashwat Kishore
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N10
N10

Find all positive integer bases b ≥ 9 so that the number

n−1 1′s︷ ︸︸ ︷
11 · · · 1 0

n−1 7′s︷ ︸︸ ︷
77 · · · 7 8

n 1′s︷ ︸︸ ︷
11 · · · 1b

3

is a perfect cube in base 10 for all sufficiently large positive integers n.

Yang Liu

N11
N11

Let p be a prime satisfying p2 | 2p−1 − 1, and let n be a positive integer. Define

f(x) =
(x− 1)p

n − (xp
n − 1)

p(x− 1)
.

Find the largest positive integer N such that there exist polynomials g(x), h(x) with integer coefficients and
an integer r satisfying f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang
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Part II

Solutions
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A2 Algebra – Solutions ELMO 2014

A2
Given positive reals a, b, c, p, q satisfying abc = 1 and p ≥ q, prove that

p
(
a2 + b2 + c2

)
+ q

(
1

a
+

1

b
+

1

c

)
≥ (p+ q)(a+ b+ c).

AJ Dennis

Solution 1. First, note it suffices to prove that sum a2 + a−1 is at least twice sum a; in other words, the
case p = q. Just multiply both sides by q and add p− q times the inequality sum a2 is at least sum a, which
is due to Cauchy and a+ b+ c ≥ 3.

So we must show that a2 +b2 +c2 +1/a+1/b+1/c ≥ 2(a+b+c). However, we have that 1/a+1/b+1/c ≥ 3
by AM-GM. So it suffices to have a2 + b2 + c2 + 1 + 1 + 1 ≥ 2a+ 2b+ 2c, but a2 + 1 ≥ 2a and similar so this
is obvious. �

Solution 2. Note
∑
a2 ≥

∑
bc =

∑
a−1 by AM-GM (or Cauchy-Schwarz), so LHS ≥ p+q

2

(∑
a2 +

∑
bc
)
.

But ∑
a2 +

∑
bc =

∑
(a2 +

1

2
(ab+ ac)) ≥ 2

∑
a3/2b1/4c1/4 = 2

∑
a5/4

Now we can finish by weighted AM-GM or (weighted) CS/Holder to get
∑
a5/4 ≥

∑
a, implying the result.

�

This problem and its solutions were proposed by AJ Dennis.
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A3
Let a, b, c, d, e, f be positive real numbers. Given that def + de+ ef + fd = 4, show that

((a+ b)de+ (b+ c)ef + (c+ a)fd)2 ≥ 12(abde+ bcef + cafd).

Allen Liu

Solution 1. First, some beginning stuff. Note that the condition implies that d = 2m
n+p , e = 2n

m+p , f =
2p
m+n (∗).

Also, the inequality (a+ b+ c)2 ≥ (2 cos(X) + 2) · ab+ (2 cos(Y ) + 2) · ac+ (2 cos(Z) + 2) · bc, where X,Y, Z
are angles of a triangle. (Note hard, just use quadratic discriminants).

Now rewrite the LHS as (a(de+ df) + b(de+ ef) + c(df + ef))
2

and then substitute A = a(de + df), B =
b(de + ef), C = c(df + ef). Then, the inequality becomes (A + B + C)2 ≥ 12

∑
cyc

BC
(d+e)(d+f) . So now it

suffices to find a triangle such that

12

(d+ e)(d+ f)
≤ 2 cos(X) + 2

and its cyclic counterparts hold. But note that if the triangle has side lengths y + z, x + z, x + y, then

2 cos(X) + 2 = 4 x(x+y+z)
(x+y)(x+z) .

So we need
3

(d+ e)(d+ f)
≤ x(x+ y + z)

(x+ y)(x+ z)

So substitute in (∗) to get the equivalent statement

3(m+ n)(m+ p)(n+ p)2

(m2 +mp+ n2 + np)(m2 +mn+ p2 + np)
≤ 4

x(x+ y + z)

(x+ y)(x+ z)

So choose x = np(n+ p), y = mp(m+ p), z = mn(m+ n). It is not hard to show that the above inequality
reduces to

4 (mn(m+ n) +mp(m+ p) + np(n+ p)) ≥ 3(m+ n)(m+ p)(n+ p)

, which is immediate by expansion. �

This problem and solution were proposed by Allen Liu.

Solution 2. Note that de+ ef + fe ≥ 3, so we have:

(e+ f)2(d+ f)(e+ d) ≥ (3 + d2)(e+ f)2

=⇒ [(e+ f)(d+ f)− 3][(e+ d)(e+ f)− 3] ≥ [3− d(e+ f)]2

Therefore,

4

[
1

(e+ f)(d+ f)
− 3

(e+ f)2(d+ f)2

] [
1

(e+ d)(e+ f)
− 3

(e+ d)2(e+ f)2

]
≥
[

1

(d+ f)(f + e)
+

1

(d+ e)(e+ f)
− 1

(d+ e)(d+ f)
− 6

(d+ e)(d+ f)(e+ f)2

]2
Therefore the quadratic expression:

y2
[

1

(e+ f)(d+ f)
− 3

(e+ f)2(d+ f)2

]
+yz

[
1

(d+ f)(f + e)
+

1

(d+ e)(e+ f)
− 1

(d+ e)(d+ f)
− 6

(d+ e)(d+ f)(e+ f)2

]
+z2

[
1

(e+ d)(e+ f)
− 3

(e+ d)2(e+ f)2

]
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A3 Algebra – Solutions ELMO 2014

is always nonnegative. (The y2 and constant coefficients are positive). So:

(y + z)

[
y

(d+ f)(e+ f)
+

z

(d+ e)(e+ f)

]
≥ yz

e+ f
+ 3

(
y

(d+ e)
+

z

(d+ f)

)2

=⇒ 4

[
(y + z)2 − 12yz

(d+ e)(d+ f)

]
≥
[
2(y + z)− 12y

(d+ f)(e+ f)
− 12z

(d+ e)(e+ f)

]2
.

So the quadratic expression:

x2 + x

[
2y + 2z − 12y

(d+ f)(e+ f)
− 12z

(f + e)(e+ f)

]
+ y2 + c2 + 2yz − 12yz

(d+ e)(d+ f)

is always nonnegative. (The x2 and constant coefficients are positive). So:

(x+ y + z)2 ≥
∑
cyc

x

(d+ e)(d+ f)

which is precisely what we want to show. (Let x = a(de+ df), et cetera.) �

This second solution was suggested by David Stoner.
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A4
Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (a) 6= F (b) for any distinct real numbers
a and b.)

Evan Chen

Answer. For all real numbers x, f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0, we can get that
f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y− f(y)− (b+ 2c) is constant, so that y− f(y) is constant. Thus, f is
linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get 2a = b+ c, 2b = c+a
and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x + C, where C is an arbitrary real. One can easily
verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. Although it may look intimidating, this is not a very hard problem. The basic idea is to view
f(0), g(0) and h(0) as constants, and write the first equation entirely in terms of f(x), much like we would
attempt to eliminate variables in a standard system of equations. At this point we still had two degrees of
freedom, x and y, so it seems likely that the result would be easy to solve. Indeed, we simply select x in
such a way that two of the terms cancel, and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives g(f(a)) + h(b) =
g(f(b)) + h(a) =⇒ g(f(a)) − h(a) = g(f(b)) − h(b). So g(f(x)) = h(x) + a1 for a constant a1. Similarly,
h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.

Now, we will show that h(h(x)) − f(x) and h(h(x)) − g(x) are both constant. For the second, just plug in
x = 0 to the third equation. For the first, let x = a3, y = k in the original to get g(f(h(k))) = h(a3) + f(k).
But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is constant as desired.

Now f(x)− g(x) is constant, and by symmetry g(x)−h(x) is also constant. Now let g(x) = f(x) + p, h(x) =
f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q
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Now plugging in (x, y) and (y, x) into the first one gives f(x+ f(y)) = f(y+ f(x)) =⇒ f(x)−x = f(y)− y
from injectivity, f(x) = x + c. Plugging this in gives 2p = q, 2q = p, p + q = 0 so p = q = 0 and
f(x) = x+ c, g(x) = x+ c, h(x) = x+ c for a constant c are the only solutions. �

This second solution was suggested by David Stoner.

Solution 3. By putting (x, y) = (0, a) we derive that f(f(a)) = g(0) + h(a) for each a, and the analogous
counterparts for g and h. Thus we can derive from (x, y) = (t, g(t)) that

h(f(t) + h(g(t))) = f(f(t)) + g(g(t))

= g(0) + h(t) + h(0) + f(t)

= f(f(0)) + g(t+ g(t))

= h(f(0) + h(t+ g(t)))

holds for all t. Thus by injectivity of h we derive that

f(x) + h(g(x)) = f(0) + h(x+ g(x)) (∗)

holds for every x.

Now observe that placing (x, y) = (g(a), a) gives

g(2g(a)) = g(g(a) + g(a)) = h(g(a)) + f(a)

while placing (x, y) = (g(a) + a, 0) gives

g(g(a) + a+ g(0)) = h(a+ g(a)) + f(0).

Equating this via (∗) and applying injectivity of g again, we find that

2g(a) = g(a) + a+ g(0)

for each a, whence g(x) = x+ b for some real number b. We can now proceed as in the earlier solutions. �

This third solution was suggested by Mehtaab Sawhney.

Solution 4. In the first given, let x = a+ g(0) and y = b to obtain

f(a+ g(0) + f(b)) = g(a+ g(0)) + h(b) = h(a) + h(b) + f(0).

Swapping the roles of a and b, we discover that

f(b+ g(0) + f(a)) = f(a+ g(0) + f(b)).

But f is injective; this implies f(x)− x is constant, and we can the proceed as in the previous solutions. �

This fourth solution was suggested by alibez.
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A6
Let a, b, c be positive reals such that a+ b+ c = ab+ bc+ ca. Prove that

(a+ b)ab−bc(b+ c)bc−ca(c+ a)ca−ab ≥ acababcbc.

Sammy Luo

Solution 1. Note f(x) = x log x is convex. The key step: weighted Popoviciu gives

bf(a) + cf(b) + af(c) + (a+ b+ c)f

(
bc+ ca+ ab

a+ b+ c

)
≥
∑
cyc

(b+ c)f

(
ab+ bc

b+ c

)
.

Exponentiating gives

aab · bbc · cca ·
(
bc+ ca+ ab

a+ b+ c

)bc+ca+ab
≥
∏
cyc

(
b(c+ a)

b+ c

)bc+ab

=
∏
cyc

aab+ca(b+ c)ab+ca−bc−ab

Cancelling some terms and using bc+ca+ab
a+b+c = 1 gives

1 ≥
∏
cyc

aca(a+ b)bc−ab

which rearranges to the result. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let a+ b+ c = ab+ bc+ ca = S. We have

∏
cyc

(
b(a+ c)

a+ b

)ab
≤ 1

S

∑
cyc

ab2(a+ c)

a+ b
≤ 1

Where the last is true because:

(ab+ bc+ ca)2 − (a+ b+ c)

[∑
cyc

ab2(a+ c)

a+ b

]
=
abc(

∑
cyc a

3b−
∑
a2bc)

(a+ b)(b+ c)(c+ a)
≥ 0

as desired. �

This second solution was suggested by David Stoner.
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A7
Find all positive integers n with n ≥ 2 such that the polynomial

P (a1, a2, . . . , an) = an1 + an2 + . . .+ ann − na1a2 . . . an

in the n variables a1, a2, . . . , an is irreducible over the real numbers, i.e. it cannot be factored as the product
of two nonconstant polynomials with real coefficients.

Yang Liu

Answer. The permissible values are n = 2 and n = 3.

Solution. For n = 2 and n = 3 we respectively have the factorizations (a1 − a2)2 and

1
2 (a1 + a2 + a3)(a21 + a22 + a23 − a1a2 − a2a3 − a3a1).

For n ≥ 4, we view P at as a polynomial in a1 and note that the constant term is an2 + an3 + . . . + ann. So
this polynomial must be reducible. We can set a5, a6, . . . , an = 0, so now we need for an2 + an3 + an4 to be
irreducible over C. Let a = a2, b = a3, c = a4. Now we look at it as a polynomial in a, and it factors as

n∏
i=1

(
a+ ωi · n

√
bn + cn

)
where the ωi are the necessary roots of unity. Now we look how we can split this into two polynomials and
look at their respective constant terms. So the constant terms would be ω(bn+cn)

k
n for some 0 < k < n, and

some root of unity ω. So the previous expression must be a polynomial, say Q(x). But (bn + cn)k = Q(x)n.
On the right-hand side, each root has multiplicity n, but since bn + cn has no double roots, all roots on the
left-hand side have multiplicity k < n, contradiction. �

This problem and solution were proposed by Yang Liu.
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A8
Let a, b, c be positive reals with a2014 + b2014 + c2014 + abc = 4. Prove that

a2013 + b2013 − c
c2013

+
b2013 + c2013 − a

a2013
+
c2013 + a2013 − b

b2013
≥ a2012 + b2012 + c2012.

David Stoner

Solution. The problem follows readily from the following lemma.

Lemma 1. Let x, y, z be positive reals, not all strictly on the same side of 1. Then
∑

x
y + y

x ≥
∑
x+ 1

x .

Proof. WLOG (x− 1)(y − 1) ≤ 0; then

(x+ y + z − 1)(x−1 + y−1 + z−1 − 1) ≥ (xy + z)(x−1y−1 + z) ≥ 4

by Cauchy. Alternatively, if x, y ≥ 1 ≥ z, one may smooth z up to 1 (e.g. by differentiating with respect to
z and observing that x−1 + y−1 − 1 ≤ x+ y − 1) to reduce the inequality to x

y + y
x ≥ 2.

Now simply note that
∑
a2013 + a−2013 ≥

∑
a2012 + a−2012. �

This problem and solution were proposed by David Stoner.

Remark. An earlier (and harder) version of the problem asked to prove that(∑
cyc

a(a2 + bc)

)(∑
cyc

(
a

b
+
b

a

))
≥

(∑
cyc

√
(a+ 1)(a3 + bc)

)(∑
cyc

√
a(a+ 1)(a+ bc)

)
.

However, it was vetoed by the benevolent dictator.

Here is the solution to the harder version. Let si = ai + bi + ci and p = abc. The key is to Cauchy out s3’s
from the RHS and use the lemma (in the form s1s−1 − 3 ≥ s1 + s−1) on the LHS to reduce the problem to

(s1 + s−1)2(s3 + 3p)2 ≥ (3 + s1)(3 + s−1)(s3 + ps−1)(s3 + ps1).

By AM-GM on the RHS, it suffices to prove

s1+s−1

2 + s1+s−1

2
s1+s−1

2 + 3
≥
s3 + p s1+s−1

2

s3 + 3p
,

or equivalently, since s1+s−1

2 ≥ 3, that s3
p ≥

s1+s−1

2 . By the lemma, this boils down to 2
∑

cyc a
3 ≥∑

cyc a(b2 + c2), which is obvious.
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A9
Let a, b, c be positive reals. Prove that√

a2(bc+ a2)

b2 + c2
+

√
b2(ca+ b2)

c2 + a2
+

√
c2(ab+ c2)

a2 + b2
≥ a+ b+ c.

Robin Park

Remark. Equality occurs not only at a = b = c but also when a = b and c = 0.

Solution. By Holder,(∑
cyc

√
a2(a2 + bc)

b2 + c2

)2(∑
cyc

a(a2 + bc)2(b2 + c2)

)
≥

(∑
cyc

a(a2 + bc)

)3

.

So we need to prove that(∑
cyc

a(a2 + bc)

)3

≥ (a+ b+ c)2

(∑
cyc

a(a2 + bc)2(b2 + c2)

)
.

Expanding this gives the following triangle in Chinese Dumbass Notation.

1

0 0

-1 9 -1

1 -3 -3 1

-1 -8 21 -8 -1

-1 8 -11 -11 8 -1

1 -8 -11 21 -11 -8 1

-1 -3 21 -11 -11 21 -3 1

0 9 -3 -8 8 -8 -3 9 0

1 0 -1 1 -1 -1 1 -1 0 1

This is the sum of the following seven inequalities:

0 ≤
∑
cyc

a5(a2 − b2)(a2 − c2)

0 ≤
∑
cyc

b3c3(b+ c)(b− c)2

0 ≤
∑
cyc

3abc · a4(a− b)(a− c)

0 ≤
∑
cyc

2abc · a2(a2 − b2)(a2 − c2)

0 ≤
∑
cyc

2abc · (b4 + c4 + 2bc(b2 + c2))(b− c)2

0 ≤
∑
cyc

17(abc)2 · a(a− b)(a− c)

0 ≤
∑
cyc

6(abc)2 · a(b− c)2.

Hence we’re done. �

This problem was proposed by Robin Park. This solution was given by Evan Chen.
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C1
You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the
following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.

2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead
ends up.

3. Do either of the above, switching the roles of the words “magenta” and “left” with those of “yellow”
and “right”, respectively.

4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, ap-
pearing somewhere in the circle, and swap the orders of each pair.

5. Remove four consecutive beads of one color.

Starting with the circle: “yellow, yellow, magenta, magenta, cyan, cyan, cyan”, determine whether or not
you can reach a) “yellow, magenta, yellow, magenta, cyan, cyan, cyan”, b) “cyan, yellow, cyan, magenta,
cyan”, c) “magenta, magenta, cyan, cyan, cyan”, d) “yellow, cyan, cyan, cyan”.

Sammy Luo

Solution. So represent the beads in a string; write j for ma[u]j[/u]enta, i for [u]i[/u]ellow, C for cyan. Also,
write k as a shorthand for ij, and 1 for (no beads). So Ci = jC,Cj = kC,Ck = iC. Also, iiii = jjjj = 1,
ij...ij = ji...ji

We are reminded of quaternion multiplication. So what’s C? We could ignore this question by moving all the
Cs together; instead, we interpret the string as a series of operations (applied from left to right) to perform
on a quaternion. Note that if a yellow bead corresponds to left multiplying by i and a magenta bead by j,
i.e. an i in the string transforms x = a+ bi+ cj + dk to ix = −b+ ai− dj + ck, where a, b, c, d ∈ R, then the
operation C(x) = a+ ci+ dj + bk that cyclicly permutes the i, j, k components satisfies

i(C(x)) = −c+ ai− bj + dk = C(−c+ di+ aj − bk) = C(j(x)).

So Ci = jC in the beads; similarly, Cj = kC,Ck = iC as wanted.

So we let this be the cyan operation. Then, starting with the general quaternion x = a + bi + cj + dk, the
initial state of the bead string, iijjCCC, gives C(C(C(j(j(i(i(x))))))) = x, since C3 = 1. Since all the
beads are invertible, starting the string at any other place in the circle will still produce the identity; all the
allowed bead operations preserve the fact that the bead string composes to an identity (since removing 4
cyan beads will never be possible). Now we can check that the other strings do not compose to the identity.

• The first one is ijijCCC which is multiplication by −1.

• The second is CiCjC = jCkCC = jiCCC, which is left multiplication by k.

• The third is jjCCC, again multiplication by −1.

• The fourth is iCCC, left multiplication by i.

So all are impossible. �

This problem and solution were proposed by Sammy Luo.
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C2
A 22014 + 1 by 22014 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words, for
every positive integer n greater than 2, there do not exist pairwise distinct black squares s1, s2, . . . , sn such
that si and si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1).

What is the maximum possible number of filled black squares?

David Yang

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n+ 1)− 1. In this particular instance,

m = 2014 and n = 22014 + 1.

Solution 1. Let n = 2m + 1. Double-counting square edges yields 3v + 1 ≤ 4v − e ≤ 2n(n + 1), so because
n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved iff (a) the graph formed
by black squares is a connected forest (i.e. a tree) and (b) all but two square edges belong to at least one
black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an “H-shape” (so
if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is black); call this G1. To go
from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in Gm, and fill in (x, y) with x, y not both even
iff x + y is odd (so iff one of x, y is odd and the other is even). Each “newly-created” white square has
both coordinates odd, and thus borders 4 (newly-created) black squares. In particular, there are no new
white squares on the border (we only have the original two from G1). Furthermore, no two white squares
share an edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b). To
check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff (x1, y1) and
(x2, y2) are black squares (and thus connected) in Gm (the new black squares are essentially just “bridges”).
Indeed, every path in Gm+1 alternates between coordinates with odd and even sum, or equivalently, new
and old black squares. But two black squares (x1, y1) and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2)
is black and adjacent to (2x1, 2y1) and (2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is
clear: the set of old black squares must remain connected in Gm+1, and all new black squares (including
those on the boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a cycle in Gm by
removing the new black squares from a cycle in Gm+1 (as every other square in a cycle would have to have
odd coordinate sum). �

This problem and solution were proposed by David Yang.

Solution 2. As above, we can show that there are at most 2
3n(n+1)−1 black squares. We provide a different

construction now for n = 2k + 1.

Consider the grid as a coordinate plane (x, y) where 0 ≤ x, y ≤ 2m. Color white the any square (x, y) for
which there exists a positive integer k with x ≡ y ≡ 2k−1 (mod 2)k. Then, color white the square (0, 0).
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Color the remaining squares black. Some calculations show that this is a valid construction which achieves
2
3n(n+ 1)− 1. �

This second solution was suggested by Kevin Sun.

Solution 3. We can achieve the bound of 2
3n(n + 1) − 1 as above. We will now give a construction which

works for all n = 6k + 5. Let M = 3k + 2.

Consider the board as points (x, y) where −M ≤ x, y ≤M . Paint white the following types of squares:

• The origin (0, 0) and the corner (M,M).

• Squares of the form (±a, 0) and (0,±a), where a 6≡ 1 (mod 3) and 0 < a < M .

• Any square (±x,±y) such that y − x ≡ 0 (mod 3) and 0 < x, y < M .

Paint black the remaining squares. This yields the desired construction. �

This third solution was suggested by Ashwin Sah.
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C3
We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with
center X mapping every point in S other than X to another point in S (possibly the same point).

(a) Fix an integer n. Prove that if n ≥ 2, then any line segment AB contains a unique very set S of size
n such that A,B ∈ S.

(b) Find the largest possible size of a very set not contained in any line.

(Here, an inversion with center O and radius r sends every point P other than O to the point P ′ along ray
OP such that OP ·OP ′ = r2.)

Sammy Luo

Answer. For part (b), the maximal size is 5.

Solution. For part (a), take a regular (n+ 1)-gon and number the vertices Ai (i = 0, 1, 2, . . . , n) Now invert
the polygon with center A0 with arbitrary power. This gives a very set of size n. (This can be easy checked
with angle chase, PoP, etc.) By scaling and translation, this shows the existence of a very set as in part (a).

It remains to prove uniqueness. Suppose points A = P1, P2, . . . , Pn = B and A = X1, X2, . . . , Xn = B
are two very sets on AB in that order. Assume without loss of generality that X1X2 > P1P2. Then
X2X

2
1 = X2X3 · (X1Xn −X1X2) =⇒ X2X3 > P2P3. Proceeding inductively, we find XkXk+1 > PkPk+1

for k = 1, 2, . . . , n− 1. Thus, X1Xn > P1Pn, which is a contradiction.

For (b), let P (A) (let’s call this power, A is a point in space) be a function returning the radius of inversion
with center A. Note that the power of endpoints of 1D very sets are equal, and these powers are the highest
out of all points in the very set. Let the convex hull of our very set be H. Let the vertices be A1, A2, ..., Am.
(We have m ≥ 3 since the points are not collinear.) Since A1, A2 are endpoints of a 1D very set, they have
equal power. Going around the hull, all vertices have equal power.

Lemma 1. Other than the vertices, no other points lie on the edges of H, and H is equilateral.

Proof. Say X is on A1A2. Then X,A3 are on opposite ends of a 1D very set, so they have equal power. Then
P (X) = P (A1) = P (A2) contradicting the fact the endpoints have the unique highest power. Therefore,
since all sides only have 2 points on them, and all vertices have equal power, all sides are equal.

Lemma 2. H is a regular polygon.

Proof. Let’s look at the segment A1A3. Say that on it we have a very set of size k − 1. By uniqueness and
the construction in (a), and the fact that P (A1) = P (A2) = P (A3), we get that A1, A2, A3 are 3 vertices of
a regular k-gon. Now the very set on segment A1A3 under inversion at A2 would map to a regular k-gon.
So all vertices of this regular k-gon would be in our set. Assuming that not all angles are equal taking the
largest angle who is adjacent to a smaller angle, we contradict convexity. So all angles are equal. Combining
this with Lemma 1, H is a regular polygon.

Lemma 3. H cannot have more than 4 vertices.

Proof. Firstly, note that no points can be strictly any of the triangles AiAi+1Ai+2. (*) Or else, inverting
with center Ai+1 we get a point outside H. First, let’s do if m (number of vertices) is odd. Let m = 2k+ 1.
(k ≥ 2) Look at the inversive image of A2k+1 under inversion with center A2. Say it maps to X. Note that
P (X) < P (Ai) for any i. Now look at the line Ak+2X. Since Ak+2 is an endpoint, but P (X) < P (Ak+2), the
other endpoint of this 1D very set must be on ray Ak+2X past X, contradicting (*), since no other vertices
of H are on this ray. Similarly for m even and ≥ 6 we can also find 2 points like these who contain no other
vertices in H on the line through them.
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Lemma 4. We only have 2 distinct very sets in 2D (up to scaling), an equilateral triangle (when n = 3)
and a square with its center (when n = 5).

Proof. First if H has 3 points, then by (*) in Lemma 3, no other points can lie inside H. So we get an
equilateral triangle. If H has 4 points, then by (*) in Lemma 3, the only other point that we can add into
our set is the center of the square. This also must be added, and this gives a very set of size 5.

Hence, the maximal size is 5. �

This problem was proposed by Sammy Luo. This solution was given by Yang Liu.
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C4
Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red
and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red
block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every
b years,

(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever
fall at exactly the same time. Consider a period of rb years in which the column is initially empty.
Determine, in terms of r and b, the number of blocks in the column at the end.

(b) Now suppose r and b are relatively prime and r + b is odd. At time t = 0, the column is initially
empty. Suppose a red block falls at times t = r, 2r, . . . , (b − 1)r years, while a blue block falls at
times t = b, 2b, . . . , (r − 1)b years. Prove that at time t = rb, the number of blocks in the column is
|1 + 2(r − 1)(b+ r)− 8S|, where

S =

⌊
2r

r + b

⌋
+

⌊
4r

r + b

⌋
+ . . .+

⌊
(r + b− 1)r

r + b

⌋
.

Sammy Luo

Remark. The second part of this problem was suggested by Allen Liu.

Answer. The answer is 2 gcd(r, b).

Solution 1. Consider strings of letters x, y, cancelling xx, Here yy. x, y correspond to red, blue blocks,
respectively. I’ll denote a way for the blocks to fall by (r, b, C), so r is the years between cycle of red blocks,
b is cycle between blue blocks, and C is the cycle offset, more specifically how many years after the first red
block falls does the first blue block fall. C < 0 is possible, that just means that the first blue block falls
earlier than the first red block. To do this, we induct on r + b. Assume, gcd(r, b) = 1.

Now, let r > b and r = bk + q, 0 ≤ q < b. We have 2 similar cases to consider:

Case 1: q is odd. First we’ll do if C > 0, and then by the problem statement, C < b. We’ll actually show
that this falling situation is the same as (q, b, C) = (b, q,−C), and then we’ll finish this case by induction.
In this case, it’s easy to see that the falling will result in a sequence like

x(y . . . y)x(y . . . y) . . . x(y . . . y).

Note that the (y . . . y) each have length either k or k+ 1, with exactly q of those strings having length k+ 1
and the other b− q having length k. Note that k is even. Now for each of the (y . . . y) strings, reduce them
to a single letter depending on parity. Now we are left with q y’s and still b x’s. We show the resultant string
is equal to (q, b, C).

This is actually pretty clear using simple remainder arguments. Say that the first x block fell at time 0. Just
note that the length of (some y) was k + 1 iff the first y in the string of (some y) fell at time t and 0 < t
(mod r) < q (then t+kb < kb+ q = r, so another x would still have not appeared, but will appear next). So
seeing all this, my claim becomes equivalent to the following assertion: Let l be the smallest positive integer

such that 0 < (C + l · b) (mod r) < q. Let t = (C + l · b) (mod r) Let j = (C+l·b)−t
r . Then j is also the

smallest positive integer such that (j + 1) · q > C. The proof of this is pretty silly. Then jr + t = C + l · b.
Taking (mod b) gives C ≡ jq + t, and since 0 < C < b, C ≤ jq + t < q(j + 1). The converse follows from
the fact that for anytime the 2 sides match (mod b), we can solve for l. Why is it equivalent? Well, the
first time k+ 1 y’s appear consecutively in the initial sequence is when 0 < t (mod r) < q, and the first time
(since k + 1 is odd) a y would appear in the reduced sequence is when q(j + 1) > C. And these match! For
the rest, just rotate the sequence and keep going. Now induction gives that it reduces to the string xy or yx.

32 http://www.aops.com/Forum/viewtopic.php?t=549706

http://www.aops.com/Forum/viewtopic.php?t=549706
http://www.aops.com/Forum/viewtopic.php?t=549706


C4 Combinatorics – Solutions ELMO 2014

Ok, now C < 0. So then our sequence would be yyxyyyyxyyyxyy or something like that. What we do is the
following: We rotate it by putting stuff on the back end, and then use the case C > 0, and associativity of
cancellation:

yyxyyyyxyyyxyy = (yyx)(xyy)yyxyyyyxyyyxyy

= (yyx)(xyyyyxyyyyxyyy)(xyy)

= (yyx)(xy)(xyy)

= yx.

(Computations show that it always ends up this way). So C < 0 is finished.

Case 2: q is even. Similar remainder arguments as above show that if C > 0, As above, it’s equivalent to
saying the minimal j with (b−q)(j+1) > b−C is also the minimal j with C+l·b = j·r+t and q < t < b. Taking
(mod b), we get b−C ≡ j(b−q)−t. But 0 < −t (mod b) < b−q. So b−C ≤ j(b−q)+(b−q) = (j+1)(b−q),
as desired. �

This first solution was suggested by Yang Liu.

Solution 2. As in Yang’s solution have (r, b, C) represent the state. WLOG r > b so we can set 0 < C < b.
Only bCc actually matters so there are b possibilities. Before deletion, the sequence consists of b blue blocks
in a cycle with some number of red blocks between each adjacent pair. We can see that taking any possible
sequence and shifting the numbers of red blocks between each pair right one pair gives an equivalent sequence,
but since (r, b) = 1 all of these are distinct, so they’re the only possibilities.

So now every (r, b, C) is equivalent to (r, b, ε) where 0 < ε < 1, except shifted. Basically this yields xyS,
where S is what would have resulted from all the nonsimultaneous blocks if we allowed C = 0. But by
symmetry S is symmetric about its center rb

2 , so everything cancels out in pairs from the center outwards,
until we’re left with xy.

Basically this leaves the issue of what the offset, in changing the point at which the cyclic sequence’s wrap-
over is broken, does. Let the unshifted string be xySA, where A is the part that is cut off and shifted to
the left. Since SA must be a palindrome by the symmetry argument above, S is of the form (A−1)(S′),
where A−1 is A in reverse and S′ is a palindrome. Then the shifted string cancels to AxyA−1. We claim
this cancels with only two elements remaining. Indeed we can keep reducing the size of the A; since A’s
last element is the same as A−1’s first, one of them has to cancel with one of x, y, leaving A′yxA′−1, where
|A′| = |A| − 1, and this continues until only xy or yx remains. �

This second solution was suggested by Allen Liu.

This problem was proposed by Sammy Luo.
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C6
Let f0 be the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each positive
integer m, let fm(x, y) be the remainder when

fm−1(x, y) +

1∑
j=−1

1∑
k=−1

fm−1(x+ j, y + k)

is divided by 2. Finally, for each nonnegative integer n, let an denote the number of pairs (x, y) such that
fn(x, y) = 1. Find a closed form for an.

Bobby Shen

Solution. Note that ai is simply the number of odd coefficients of Ai(x, y) = A(x, y)i, where A(x, y) =
(x2 + x + 1)(y2 + y + 1) − xy. Throughout this proof, we work in F2 and repeatedly make use of the

Frobenius endomorphism in the form A2km(x, y) = Am(x, y)2
k

= Am(x2
k

, y2
k

) (*). We advise the reader to
try the following simpler problem before proceeding: “Find (a recursion for) the number of odd coefficients
of (x2 + x+ 1)2

n−1.”

First suppose n is not of the form 2m − 1, and has i ≥ 0 ones before its first zero from the right. By direct
exponent analysis (after using (*)), we obtain an = an−(2i−1)

2

a2i−1. Applying this fact repeatedly, we find

that an = a2`1−1 · · · a2`r−1, where `1, `2, . . . , `r are the lengths of the r consecutive strings of ones in the
binary representation of n. (When n = 2m − 1, this is trivially true. When n = 0, we take r = 0 and a0 to
be the empty product 1, by convention.)

We now restrict our attention to the case n = 2m−1. The key is to look at the exponents of x and y modulo
2 – in particular, A2n(x, y) = An(x2, y2) has only “(0, 0) (mod 2)” terms for i ≥ 1. This will allow us to find
a recursion.

For convenience, let U [B(x, y)] be the number of odd coefficients of B(x, y), so U [A2n−1(x, y)] = a2n−1.
Observe that

A(x, y) = (x2 + x+ 1)(y2 + y + 1)− xy = (x2 + 1)(y2 + 1) + (x2 + 1)y + x(y2 + 1)

(x+ 1)A(x, y) = (y2 + 1) + (x2 + 1)y + x3(y2 + 1) + (x3 + x)y

(x+ 1)(y + 1)A(x, y) = (x2y2 + 1) + (x2y + y3) + (x3 + xy2) + (x3y3 + xy)

(x+ y)A(x, y) = (x2 + y2) + (x2 + 1)(y3 + y) + (x3 + x)(y2 + 1) + (x3y + xy3).

Hence for n ≥ 1, we have (using (*) again)

U [A2n−1(x, y)] = U [A(x, y)A2n−1−1(x2, y2)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + U [(y + 1)A2n−1−1(x, y)] + U [(x+ 1)A2n−1−1(x, y)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + 2U [(x+ 1)A2n−1−1(x, y)].

Similarly, we get

U [(x+ 1)A2n−1] = 2U [(y + 1)A2n−1−1] + 2U [(x+ 1)A2n−1−1] = 4U [(x+ 1)A2n−1−1]

U [(x+ 1)(y + 1)A2n−1] = 2U [(xy + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1] = 4U [(x+ y)A2n−1−1]

U [(x+ y)A2n−1] = 2U [(x+ 1)(y + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1].

Here we use the symmetry between x and y, and the identity (xy+ 1) = y(x+ y−1).) It immediately follows
that

U [(x+ 1)(y + 1)A2n+1−1] = 4U [(x+ y)A2n−1]

= 8U [(x+ 1)(y + 1)A2n−1−1] + 8
U [(x+ 1)(y + 1)A2n−1]

4
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for all n ≥ 1, and because x− 4 | (x+ 2)(x− 4) = x2 − 2x− 8,

U [A2n+2−1(x, y)] = 2U [A2n+1−1(x, y)] + 8U [A2n−1(x, y)]

as well. But U [A20−1] = 1, U [A21−1] = 8, and

U [A22−1] = 4U [x+ y] + 8U [x+ 1] = 24,

so the recurrence also holds for n = 0. Solving, we obtain a2n−1 = 5·4n−2(−2)n
3 , so we’re done. �

This problem and solution were proposed by Bobby Shen.

Remark. The number of odd coefficients of (x2 +x+ 1)n is the Jacobsthal sequence (OEIS A001045) (up to
translation). The sequence {an} in the problem also has a (rather empty) OEIS entry. It may be interesting
to investigate the generalization

1∑
j=−1

1∑
k=−1

cj,kfi−1(x+ j, y + k)

for 9-tuples (cj,k) ∈ {0, 1}9. Note that when all cj,k are equal to 1, we get (x2 + x + 1)n(y2 + y + 1)n, and
thus the square of the Jacobsthal sequence.

Even more generally, one may ask the following: “Let f be an integer-coefficient polynomial in n ≥ 1
variables, and p be a prime. For i ≥ 0, let ai denote the number of nonzero coefficients of fp

i−1 (in Fp).
Under what conditions must there always exist an infinite arithmetic progression AP of positive integers for
which {ai : i ∈ AP} satisfies a linear recurrence?”
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G1 Geometry – Solutions ELMO 2014

G1
Let ABC be a triangle with symmedian point K. Select a point A1 on line BC such that the lines AB, AC,
A1K and BC are the sides of a cyclic quadrilateral. Define B1 and C1 similarly. Prove that A1, B1, and C1

are collinear.

Sammy Luo

Solution 1. LetKA1 intersectAC,AB atAb, Ac respectively, and analogously define the pointsBc, Ba, Ca, Cb.
We claim that AbAcBcBaCaCb is cyclic with center K. It’s well known that KAb = KAc, etc. due to
the antiparallelisms. Now note ∠BcAcK = ∠AAcAb = ∠BCA = ∠BaBcB = ∠KBcAc so we also have
KAc = KBc, etc. So all six segments from K are equal. Now Pascal on AbAcBcBaCaCb gives A1, B1, C1

collinear as wanted. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let DEF be the triangle formed by the tangents to the circumcircle of ABC at A, B, and C.
Let A′, B′, C ′ be EF ∩BC, DF ∩AC, and DE ∩AB, respectively. Since EF is a tangent, it is antiparallel
to BC through A, so A1K ‖ EF . Then A1B = A1K · A

′B
A′E , and A1C = A1K · A

′C
A′F by similar triangles, so

A1B

A1C

B1C

B1A

C1A

C1B
=
A′B ·A′F
A′C ·A′E

· B
′C ·B′D

B′A ·B′F
· C
′A · C ′E

C ′B · C ′D

=
BA′

A′C

CB′

B′A

AC ′

C ′B
· FA

′

A′E

EC ′

C ′D

DB′

B′F
= 1 · 1
= 1

by Menelaus. (DEF is collinear, since it is the symmedian line) Thus by the converse of Menelaus, A1, B1,
and C1 are collinear. �

This second solution was suggested by Kevin Sun.
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G2 Geometry – Solutions ELMO 2014

G2
ABCD is a cyclic quadrilateral inscribed in the circle ω. Let AB ∩ CD = E, AD ∩ BC = F . Let ω1, ω2

be the circumcircles of AEF,CEF , respectively. Let ω ∩ ω1 = G, ω ∩ ω2 = H. Show that AC,BD,GH are
concurrent.

Yang Liu

Solution. Let AC ∩ BD = Q, AC ∩GH = Q′ (assuming Q 6= Q′), and let the radical center of ω, ω1, and
ω2 be P , so P is the intersection of EF , AG, and HC. By Brokard’s on ABCD, FQE is self-polar, so P
(on EF ) is on the polar of Q. Similarly, by Brokard’s on AGCH, Q′ is on the polar of P . Thus QQ′ is the
polar of P , so AC is the polar of P , which is clearly absurd. �

This problem and solution were proposed by Yang Liu.
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G3 Geometry – Solutions ELMO 2014

G3
Let A1A2A3 · · ·A2013 be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon,
there exists a point Q 6= P such that AiP

AiQ
is constant for i ∈ {1, 2, 3, · · · , 2013}.

Robin Park

Solution. Let ω be the circumcircle of A1A2A3 · · ·A2013. We just need Q such that ω is the Apollonius circle
of P,Q for some ratio r. Let the center of ω be O, and let PO intersect ω at X,Y . Pick point Q on line XY
such that XP

XQ = Y P
Y Q , i.e. XPY Q is harmonic. Now, ω is a circle with center on PQ that has two points

X,Y with the same ratio of distances to P,Q, so ω is an Apollonius circle of P,Q; the ratio of distances
from any point on ω to P,Q is constant, implying the problem. �

This problem was proposed by Robin Park. This solution was given by Sammy Luo.
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G4 Geometry – Solutions ELMO 2014

G4
Let ABCD be a quadrilateral inscribed in circle ω. Define E = AA ∩ CD, F = AA ∩ BC, G = BE ∩ ω,
H = BE ∩AD, I = DF ∩ω, and J = DF ∩AB. Prove that GI, HJ , and the B-symmedian are concurrent.

Robin Park

Solution. The main point of this problem is to show that AICG is harmonic. Indeed, because of similar
triangles and the Law of Sines, AI = AD·FI

AF and CI = 2R sin(∠FBI) = 2R · FIFB · sin(∠BID) = FI·BD
BF . So

AI

CI
=
AD

BD
· BF
AB

=
AD ·AB
BD ·AC

=
AG

CG

since it’s symmetric in B,D.

Therefore, AICG is harmonic. Let AA∩CC = K. Note that I,G,K are collinear. By Pascal’s Theorem on
AABGID, we get that K,H, J are collinear. By the Symmedian Lemma, the B-symmedian passes through
K, so HJ, IG, and the B-symmedian all pass through K �

This problem was proposed by Robin Park. This solution was given by Yang Liu.
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G5 Geometry – Solutions ELMO 2014

G5
Let P be a point in the interior of an acute triangle ABC, and let Q be its isogonal conjugate. Denote by
ωP and ωQ the circumcircles of triangles BPC and BQC, respectively. Suppose the circle with diameter
AP intersects ωP again at M , and line AM intersects ωP again at X. Similarly, suppose the circle with
diameter AQ intersects ωQ again at N , and line AN intersects ωQ again at Y .

Prove that lines MN and XY are parallel. (Here, the points P and Q are isogonal conjugates with respect to
4ABC if the internal angle bisectors of ∠BAC, ∠CBA, and ∠ACB also bisect the angles ∠PAQ, ∠PBQ,
and ∠PCQ, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Sammy Luo

Solution. We are given that P and Q are isogonal conjugates.

Since ∠PMX = ∠QNY = π
2 , we derive

∠PBX = ∠QBY = ∠PCX = ∠QCY =
π

2
.

Thus
∠ABY =

π

2
+ ∠ABQ = ∠PBC +

π

2
= π − ∠CBX,

so X and Y are isogonal with respect to ∠B. However, similar angle chasing gives that they are isogonal with
respect to ∠C. Thus they are isogonal conjugates with respect to ABC. (In particular, ∠BAY = ∠XAC.)

Also, ∠ABY = π − ∠CBX = π − ∠CMX = ∠AMC; hence 4ABY ∼ 4AMC. Similarly, 4ABN ∼
4AXC. Thus AN

AB = AC
AX , and AB

AY = AM
AC . Multiplying, we get that AN

AY = AM
AX which implies the conclusion.

�

This problem was proposed by Sammy Luo. This solution was given by Kevin Sun.

Remark. The points M and N are also isogonal conjugates.
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G6 Geometry – Solutions ELMO 2014

G6
Let ABCD be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles AOB and COD
meet again at G, while the circumcircles of triangles AOD and BOC meet again at H. Let ω1 denote
the circle passing through G as well as the feet of the perpendiculars from G to AB and CD. Define ω2

analogously as the circle passing through H and the feet of the perpendiculars from H to BC and DA. Show
that the midpoint of GH lies on the radical axis of ω1 and ω2.

Yang Liu

Solution 1. Let F = AB∩CD, E = AD∩BC. Let P be the intersection of the diagonals of the quadrilateral
(AC ∩ BD) Then simple angle chasing gives that APGD is cyclic. (Just show that ∠APD = ∠AGD =
∠AGO + ∠DGO, both which are easy to find).

Similarly, BPGC is cyclic. Now we show that ∠PGO = ∠PGA+ ∠OGA = ∠PDA+ ∠OBA = π/2.

Now by Radical Axis on BPGC,APGD,ABCD, we get that E,P,G are collinear. By Radical Axis on
ABGO,CDGO,ABCD, we get that F,O,G are collinear. Therefore, ∠EGF = π−∠PGO = π/2. Similarly,
∠EHF = π/2. So EFGH is cyclic. Similarly, O,H,E are collinear.

Now, the finish is easy. Let M be the midpoint of GH. And let line MGH hit ω1 at G′, and ω2 at H ′. Note
that ∠EH ′H = π/2 = ∠EGF , and ∠EHH ′ = ∠EFG. So 4EH ′H ∼ 4EGF =⇒ HH ′ = EH·GF

EF = GG′

by symmetry. So MH ·MH ′ = MH · (MH +HH ′) = MG · (MG+GG′) = MG ·MG′, so M has the same
power wrt both circles, so it’s on the radical axis. �

This problem and solution were proposed by Yang Liu.

Solution 2. Let P = AB ∩ CD,Q = AD ∩ BC,R = AC ∩ BD. It’s easy to show by angle chasing that
the Miquel point M of a cyclic ABCD with center O lies on (AOC). So G,H are the Miquel points of
ACBD,ABDC respectively. It’s also well-known (by Brokard and a spiral similarity, see here) that G,H
are then the feet of the altitudes from O to QR,RP respectively (and O is the orthocenter of PQR).

Note that ω1, ω2 are the circles with diameters GP,HQ respectively (due to the right angles). Now, PQGH
is cyclic due to the right angles, so the radical center of (PQGH), ω1, ω2 is GP ∩ HQ = O. Let F be the
midpoint of PQ, M the midpoint of GH, and O1, O2 the centers of ω1, ω2 respectively (so, the midpoints
of PG,QH respectively). Now it suffices to show that OM ⊥ O1O2. But notice that O1, O2 are the feet of
perpendiculars from F to PG,QH respectively, and so the line through O that is perpendicular to O1O2

is isogonal to OF w.r.t. angle POQ. But since GHPQ is cyclic, GH,PQ are antiparallel wrt this angle,
so since OM bisects segment GH, OM is the O-symmedian in 4POQ, and so is isogonal to OF , and thus
perpendicular to O1O2 as wanted. So M is on the radical axis as wanted. �

This second solution was suggested by Sammy Luo.
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G7 Geometry – Solutions ELMO 2014

G7
Let ABC be a triangle inscribed in circle ω with center O; let ωA be its A-mixtilinear incircle, ωB be its
B-mixtilinear incircle, ωC be its C-mixtilinear incircle, and X be the radical center of ωA, ωB , ωC . Let A′, B′,
C ′ be the points at which ωA, ωB , ωC are tangent to ω. Prove that AA′, BB′, CC ′ and OX are concurrent.

Robin Park

Solution. Let the incenter be I, and the tangency points of the incircle to the 3 sides be TA, TB , TC . Also,
let ωA be tangent to the sides AB,AC at AB , AC , respectively (and similar for the other circles and sides).
Let the midpoints of the arcs be MA,MB ,MC , and the midpoints of TA, I be NA, etc.

It’s pretty well-known that I is the midpoint of AB , AC , and similar. Now we show that the radical axis of
ωB , ωC contains NA and MA. First we show that NA is on the radical axis. Let (X,ω) denote the power of
a point X w.r.t. some circle ω. Let f : R2 → R be the function such that f(P ) = (P, ωB)− (P, ωC). Then
f(I) = −IB2

C + IC2
B and f(TA) = TAB

2
C − TAC2

B , so it follows by Pythagorean Theorem that

f(I) + f(TA) = (IC2
B − TAC2

B)− (IB2
C − TAB2

C) = IT 2
A − IT 2

A = 0.

Since f is linear in P , we have that f(NA) = f(I)+f(TA)
2 = 0. Hence NA lies on the radical axis of ωB and

ωC .

Now we show that MA lies on the radical axis. Let lB be the length of the tangent from MA to the circle
ωB . By Casey’s Theorem on the circles B,MA, C, ωB , we get that

BMA · CBC + CMA ·BBC = lB ·BC =⇒ lB = BMA = CMA

. Similarly, lC = BMA = CMA (tangent from MA to ωC), so MA lies on their radical axis. Now by
simple angle chasing, MAMB ‖ NANB , so the triangles MAMBMC and NANBNC are homothetic, so
MANA,MBNB ,MCNC are concurrent on IO (the lines through their centers). �

This problem was proposed by Robin Park. This solution was given by Yang Liu and Robin Park.
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G8
In triangle ABC with incenter I and circumcenterO, let A′, B′, C ′ be the points of tangency of its circumcircle
with its A,B,C-mixtilinear circles, respectively. Let ωA be the circle through A′ that is tangent to AI at
I, and define ωB , ωC similarly. Prove that ωA, ωB , ωC have a common point X other than I, and that
∠AXO = ∠OXA′.

Sammy Luo

Solution. For the sake of simplicity, let D, E, and F be the points of tangency of the circumcircle to the
mixtilinear incircles.

Invert with respect to the incircle; 4ABC is mapped to 4A′B′C ′. Since the circumcircles of 4A′B′I,
4B′C ′I, and 4C ′A′I concur at I, by a well-known lemma I is the orthocenter of A′B′C ′. Let D′, etc. be
the images of D, etc., under this inversion. We claim that D′ is the reflection of I over the midpoint of
B′C ′. This is clear because A′, B′, C ′, and D′ are concyclic and ID is a symmedian of 4IBC, implying
that ID′ is a median of 4IB′C ′. Therefore D′ is also the antipode of A′ with respect to the circumcircle of
4A′B′C ′. Similarly, E′ and F ′ are the antipodes of B′ and C ′, respectively.

ωA is mapped to a line parallel to A′I passing through D′, and ωB , ωC are mapped similarly. Clearly ω′A,
ω′B , and ω′C concur at the orthocenter of 4D′E′F ′, since B′C ′ ‖ E′F ′, C ′A′ ‖ F ′D′, and A′B′ ‖ D′E′. Let
this point be X ′. Note that ∠X ′A′I = ∠X ′D′I.

We claim that I, X ′, and O are collinear. If P is the circumcenter of 4A′B′C ′, then note that P is the
midpoint of IX ′ because there exists a homothety centered at O with ratio −1 sending4A′B′C ′ to4D′E′F ′
(X ′ is the de Longchamps point of 4A′B′C ′). Hence O, I, and P are collinear and so it follows that I, X ′,
and O are collinear.

Inverting back to our original diagram, we see that ∠X ′A′I = ∠X ′D′I implies that ∠AXO = ∠AXI =
∠IXD = ∠OXD, as desired. �

This problem was proposed by Sammy Luo. This solution was given by Robin Park.
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G9
Let P be a point inside a triangle ABC such that ∠PAC = ∠PCB. Let the projections of P onto BC, CA,
and AB be X,Y, Z respectively. Let O be the circumcenter of 4XY Z, H be the foot of the altitude from
B to AC, N be the midpoint of AC, and T be the point such that TY PO is a parallelogram. Show that
4THN is similar to 4PBC.

Sammy Luo

Solution 1. LetQ be the isogonal conjugate of P with respect to ABC. It’s well-known that O is the midpoint
of PQ. Also, the given angle condition gives ∠BAQ = ∠PAC = ∠PCB = ∠BCP , so 4BPC ∼ 4BQA.
Now let B′, P ′ be the reflections of B,P over AC, respectively, and let T ′ be the midpoint of QP ′. We have
4B′P ′C ∼ 4BPC ∼ 4BQA; furthermore, B′P ′C and BQA are oriented the same way, so their average
(the triangle formed by the midpoints of the segments formed by corresponding points in the triangles),
HT ′N , is directly similar to both of them (for a proof, do some spiral similarity stuff). So it suffices to show
T ′ = T . But OY T ′ is the medial triangle of P ′QP , so OT ′ ‖ PY and Y T ′ ‖ OP , and so T ′ = T and we’re
done. �

This problem and solution were proposed by Sammy Luo.

Solution 2. Let Q be the reflection of P over O. It’s quite well-known and easy to show that Q is the isogonal
conjugate of P . Since ∠PAC = ∠PCB, ∠BAQ = ∠PAC = ∠PCB = ∠BCP . Thus 4BPC ∼ 4BQA
Let S = AP ∩ CQ. Since ∠CAP = ∠ABQ, 4CAS is isosceles, so SN ⊥ AC. Let P ′ and Y ′ are the
reflection of P and Y over NS. Since Y P ⊥ AC ⊥ NS, Y PP ′Y ′ is a rectangle. Let T ′ is the reflection of Y
over T . Then P , P ′, Q, and O are the translations of Y , Y ′, T ′, and T under vector Y P . Thus Y ′T ′ ‖ P ′Q,
so NT ‖ P ′Q (since Y ′T ′ is the dilation by 2 from C of NT ).

Thus NT ‖ CQ, so ∠HNT = ∠HCQ = ∠PCB.

Let B′ be the reflection of B over PC, and let D be the foot of the perpendicular from B to PC. Then
4B′PC ∼= 4BPC ∼ 4BQA. If we average these triangles, we get that 4BQA ∼ 4DON , since D, O, and
N , are the midpoints of AC, PQ, and BB′ respectively.

Since NT ‖ CQ, ∠HNT = ∠HCQ = ∠PCB = ∠DNO, so ∠TNO = ∠HND.

Now, we know that ∠CHB = ∠CDB = π
2 , so CHDB is cyclic, so ∠NHD = ∠CHD = π − ∠CBD =

π − (π2 − ∠DCB) = π
2 + ∠PCB = π

2 + ∠ACQ = π
2 + ∠ANT = ∠NTO. Thus 4NHD ∼ 4NTO, so

4THN ∼ 4ODN ∼ 4QBA ∼ 4PBC. �

This second solution was suggested by Kevin Sun.
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G10
We are given triangles ABC and DEF such that D ∈ BC,E ∈ CA,F ∈ AB, AD ⊥ EF,BE ⊥ FD,CF ⊥
DE. Let the circumcenter of DEF be O, and let the circumcircle of DEF intersect BC,CA,AB again at
R,S, T respectively. Prove that the perpendiculars to BC,CA,AB through D,E, F respectively intersect at
a point X, and the lines AR,BS,CT intersect at a point Y , such that O,X, Y are collinear.

Sammy Luo

Solution 1. Start with a triangle DEF , circumcircle ω and orthocenter H. Let DH∩EF = D1, EH∩DF =
E1, FH∩DE = F1. We already showed that from this a unique triangle ABC. We first show that HR ⊥ BC
and similar stuff. To do this, phantom R′, S′, T ′ on �DEF so that HR′ ⊥ R′F and similar for S′, T ′. Let
A′ = DR′ ∩ES′, and similar for B′, C ′. By Radical Axis Theorem on �FT ′HF1,�HS′ED1, ω we get that
A′, D1, H are collinear, so A′D ⊥ EF . Since ABC is unique, R′ = R,S′ = S, T ′ = T . So HR ⊥ BC.

Now we show that FS ∩ ET = K,O,H are collinear. For this part we use complex numbers. Let ω be the
unit circle. Then h = d+ e+ f . First we find s. s satisfies

s− e
s− e

= −s− h
s− h

Using x̄ = 1
x for x on the unit circle, we simplify this to s−(d+e+f)

1
s−( de+df+ef

def )
= se, and now we solve for s to

find s = df(d+f+2e)
de+ef+2df . Now let K ′ = OH ∩ FS. Since K ′ is on OH, we can write it’s complex number as

k′ = p(d + e + f) for a real number p. Now we compute f − s = f − df(d+f+2e)
de+ef+2df = f

(
1− d(d+f+2e)

de+ef+2df

)
=

f
(

(f−d)(d+e)
de+ef+2df

)
. Now its pretty easy to compute that f−s

f−s = −df
2(d+f+2e)
de+ef+2df . So k′−f

k′−f = f−s
f−s = −df

2(d+f+2e)
de+ef+2df .

Rearranging, we get

k′ + k̄′ · df
2(d+ f + 2e)

de+ ef + 2df
= f +

df(d+ f + 2e)

de+ ef + 2df
=⇒

p

(
(d+ e+ f) +

f(d+ f + 2e)(de+ ef + df)

e(de+ ef + 2df)

)
= f

(
d2 + ef + 3de+ 3df

de+ ef + 2df

)
Now, if we be smart with some manipulation (just use distributive property a lot), we can simplify the above
to (after multiplying both sides by de+ ef + 2df),

p

(
def(d+ e+ f) + (e+ f)(d+ e+ f)(de+ ef + df) + ef(de+ ef + df)

ef

)
= (d2 + ef + 3de+ 3df)

. Now it’s easy to see that p will be symmetric in e, f so ET also passes through K ′.

Finally, to finish, use Pappus’s Theorem on BTF,CSE. Let BS ∩ CT = Y,CF ∩ BE = H,FS ∩ ET = K
are collinear. But note that O,H,K are collinear, and that X is the reflection of H over O (since HR ⊥ BC
and similar stuff). So O,X, Y are collinear, as desired. �

This problem and solution were proposed by Sammy Luo.

Solution 2. This is the same as above, except we will provide a synthetic proof that K, O, and H are
collinear. Invert about H. H maps to the incenter of D′E′F ′. S′ is the intersection of the exterior angle
bisector of E′ with (D′E′F ′), and T ′ is defined similarly for F ′. Thus S′, T ′ are midpoints of arcs DEF
and DFE. We want to prove that H, K ′ = (HF ′S′) ∩ (HE′T ′), and the center of D′E′F ′ are collinear.
Let U be the center of this circle and W = F ′S′ ∩ E′T ′. Since F ′S′E′T ′ is cyclic, W lies on HK ′, so it
suffices to show U,W,H are collinear. Let E0, F0 be the other arc midpoints of D′E′, D′F ′. Then Pascal on
DED0E0S

′T ′ gives U,W,H collinear, so we are done. �

This second solution was suggested by Michael Kural.
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G11
Let ABC be a triangle with circumcenter O. Let P be a point inside ABC, so let the points D,E, F be on
BC,AC,AB respectively so that the Miquel point of DEF with respect to ABC is P . Let the reflections
of D,E, F over the midpoints of the sides that they lie on be R,S, T . Let the Miquel point of RST with
respect to the triangle ABC be Q. Show that OP = OQ.

Yang Liu

Solution 1. Let the midpoints of the sides be MA,MB ,MC , respectively.

Lemma 1. Let D,E, F be points on BC,AC,AB respectively. Then there exists a point P such that such
that ∠PFB = ∠PDC = ∠PEA = α if and only if

BF 2 + CD2 +AE2 = BD2 + CE2 +AF 2 + 4K cotα

where K is the area of 4ABC.

Proof. We apply the Law of Cosines to the triangles PFB,PFA,PEA,PEC,PDC,PBD to get the three
equations

PF 2 +BF 2 − 2 · PF ·BF cosα = PD2 +BD2 + 2 · PD ·BD cosα

PE2 +AE2 − 2 · PE ·AE cosα = PF 2 +AF 2 + 2 · PF ·AD cosα

PD2 + CD2 − 2 · PD · CD cosα = PE2 + CE2 + 2 · PE · CE cosα

Summing this and rearranging terms gives

BF 2 +AE2 + CD2 = BD2 + CE2 +AF 2

+ 2 cosα (PF ·BF + PD ·BD + PE ·AE + PF ·AD + PD · CD + PE · CE)

= BD2 + CE2 +AF 2 + 2 cosα · 2K

sinα

= BD2 + CE2 +AF 2 + 4K cotα

For the “if” part, just use that if we fix P,D,E, the there is only one point F on AB such that ∠PFB =
∠PDC = ∠PEA = α. Also, the equation above only has one solution on the side AB as we move F around.
So those 2 points must be the same.

Lemma 2. The reflections of PD,PE,PF over MAO,MBO,MCO concur at Q.

Proof. Since ∠PFB = ∠PDC = ∠PEA (all cyclic quadrilaterals), we can just apply Lemma 1, and do
some easy calculations to see that the reflections concur. So let the common intersection point be Q′. Then
because opposite angles sum to π, Q′SCR,Q′TAS,Q′TBR all are cyclic, so Q′ = Q.

To finish, let QS ∩ PE = Y,QT ∩ PF = Z. By easy angle chasing, PQY Z is cyclic (the points are in
some order). Note that YMB ∩ ZMC = O. But also, since YMB , ZMC bisect the angles ∠EY S,∠FZT
respectively, the meet at one of the arc midpoints of PQ on the circumcircle of PQY Z. So O is the arc
midpoint of PQ on the circle PQY Z, so OP = OQ as claimed. �

This problem and solution were proposed by Yang Liu.

Solution 2. Let MA,MB ,MC be the midpoints of BC,AC,AB.

I guess we should use directed angles. Let X = PD∩QR, Y = PE ∩QS, Z = PF ∩QT . Let α = ∠PDB =
∠PFA = ∠PEC, and β = ∠CRQ = ∠ASQ = ∠BTQ. ∠PXQ = −∠BDP − ∠QRC = α + β. Similarly,
∠PY Q = ∠PZQ = α+ β. Thus P , Q, X, Y , and Z are concyclic.
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Let G = (AEF ) ∩ (AST ), H = (BFD) ∩ (BTR), I = (CDE) ∩ (CRS). ∠PGQ = ∠AGQ − ∠AGP =
∠ATQ − ∠AFP = α + β. Similarly, ∠PHQ = ∠PIQ = α + β, so G, H, and I are on the circle, so
P ,Q,G,H,I,X,Y ,Z are concyclic.

Now, I claim that AG, BH, and CI concur. Consider sinBAG
sinGAC = sinFAG

sinGAE = sinFEG
sinGFE = FG

GE . Since 4FGT ∼
4EGS (due to cyclic quads), FG

GE = FT
ES . Thus sinBAG

sinGAC
sinACI
sin ICB

sinCBH
sinHBA = FT

ES
ES
DR

DR
FT = 1, so by Ceva’s

theorem, AG, BH, and CI concur.

Also, since 4FGE ∼ 4TGS, spiral similarity gives that 4FGE ∼ 4TGS ∼MCGMB . Then AMCGOMB

is cyclic.

Now, let J = AG∩BH∩CI. Since ∠AMCO = π
2 , ∠AGO = π

2 , so ∠JGO = π
2 . Similarly, ∠JHO = ∠JIO =

π
2 , so J , O, G, H, and I are cyclic with diameter JO. However, from earlier we have that the circumcircle
of GHI contains points P,Q,X, Y, Z. Thus GHIJOPQXY Z is a cyclic decagon with diameter OJ .

Then ∠PDB = ∠PFA = ∠PGA = ∠PGJ = ∠PXJ , so BC ‖ JX. Since OJ is a diameter, OX ⊥ XJ , and
since MA is a midpoint, OMA ⊥ BC. However, BC ‖ JX, so MA is on OX. However, DMA = RMA, so
4DMAX ∼= 4RMAX, so ∠DXMA = ∠MAXR, so ∠PXO = ∠OXQ, so ∠OPQ = −∠OQP , which means
that OP = OQ. �

This second solution was suggested by Kevin Sun.

Solution 3. Let AQ meet APEF at L, BQ meet BPDF at K, CQ meet CPDE at G. Let the midpoint of
K,Q be M , and the midpoints of the sides by MA,MB ,MC . Note that KDF ∼ QRT since

∠KDF = ∠KBF = ∠QBT = ∠QRT

and similarly ∠KFD = ∠QTR, so averaging these two triangles yields another similar triangle MMAMC .
Then ∠MCMMA = ∠DKF = π − ∠DBF , so BMCMMA is cyclic. But clearly this quadrilateral has
diameter BO, so OM ⊥ BM . Thus OQ = OK(= OL = OG) by similar arguments. We claim PKQG is
cyclic. Indeed,

∠KPG+ ∠KQG = 2π − ∠KPD − ∠GPD + ∠KQG = ∠BQC + ∠QCB + ∠CBQ = π

So this quadrilateral is cyclic. Then P lies on cyclic QKLG with center O, so we are done. �

This third solution was suggested by Michael Kural.

Solution 4. Let A′, B′, C ′ be the antipodes of A,B,C, respectively, in (AEF ), (BFD), (CDE) respectively;
let A′′, B′′, C ′′ be the antipodes of A,B,C, respectively, in (AST ), (BTR), (CRS), respectively. Now, B′, C ′

are both on the perpendicular to BC through D, and so forth. So note that B′, B′′ are reflections about O,
since the feet from B′, B′′ to BC,BA are both symmetric about the corresponding midpoints.

Also, note (using directed angles): ∠PB′B = ∠PFB = ∠PFA = ∠PEA = ∠PA′A = ∠PEC = ∠PDC =
∠PC ′C and ∠BPB′ = ∠APA′ = ∠CPC ′ = 90◦ so BB′P,CC ′P,AA′P are all directly similar; thus P is
the center of a spiral similarity (with angle 90◦) from A′B′C ′ to ABC, which we will call SP . Similarly, Q
is the center of a spiral similarity (with angle 90◦) from ABC to A′′B′′C ′′, which we call SQ.

Now consider the composition SQSP (SP is applied first). This maps A′B′C ′ to A′′B′′C ′′. But these two
triangles are reflections of each other about O, so O is at the same position relative to both (in fact, it’s
their center of rotation!); thus SQSP maps O to itself. In particular, since A′B′C ′, A′′B′′C ′′ are congruent,
SP , SQ must have scale factors that are multiplicative inverses; say the scale factor of SP is r.

So let O′ be the image of O under SP . So OPO′ = 90◦ and O′QO = 90◦; O′P
OP = r = O′Q

OQ . This is enough

to show OPO′, OQO′ congruent, so OP = OQ as desired. �

This fourth solution was suggested by Sammy Luo.

Remark. This is quite similar in flavor to IMO Shortlist 2012, Problem G6, and a comment given by user
proglote in that thread can be used to solve this problem.

Remark. In fact, a further generalization of this problem of this problem is possible. Let P a point, and
XY Z be its pedal triangle. A1, B1, and C1 are points on BC, AC, and AB, and A2, B2, and C2 are their
reflections over X, Y , and Z, If the Miquel point of A1, B1, C1 is P1 and the Miquel point of A2, B2, C2 is
P2, then PP1 = PP2.
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G12
Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

Solution 1. Let J be the second intersection of ω and AC, and X be the intersection of BF and AC. It’s
well-known that DJFC is harmonic; perspectivity wrt B implies AJXC is also harmonic. Then AJ

JX =
AC
CX =⇒ (AJ)(CX) = (AC)(JX). This can be rearranged to get

(AJ)(CX) = (AJ + JX +XC)(JX) =⇒ 2(AJ)(CX) = (JX +AJ)(JX +XC) = (AX)(CJ),

so (
AX

XC

)(
CJ

JA

)
= 2.

But CJ
JA = AD

DB , so by Ceva’s we have BH = 2HC, as desired. �

Solution 2. Let J be the second intersection of ω and AC. It’s well-known that DJFC is harmonic; thus
we have (DJ)(FC) = (JF )(DC). By Ptolemy’s, this means

(DF )(JC) = (DJ)(FC) + (JF )(DC) = 2(JD)(CF ) =⇒
(
JC

JD

)(
FD

FC

)
= 2.

Yet JC = DB by symmetry, so this becomes

2 =

(
DB

JD

)(
FD

FC

)
=

(
sinDJB

sin JBD

)(
sinFCD

sinFDC

)
=

(
sinDCB

sinACD

)(
sinFBA

sinCBF

)
.

Thus by (trig) Ceva’s we have sinBAH
sinCAH = 2, and since AB = AC it follows that BH = 2HC, as desired. �

This problem and its solutions were proposed by David Stoner.
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G13
Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

Solution. Let α be the half-angles of 4ABC, r inradius, and u, v, w tangent lengths to the incircle. Let
T = MP ∩ NQ so that I is the incenter of 4MNT . Then ∠IPT = ∠IXY = α = ∠IY X = ∠IQT gives
4TIP ∼ 4TIQ, so P, I,Q are collinear iff ∠TIP = 90◦ iff ∠MTN = 180◦ − 2α iff ∠MIN = 180◦ − α iff
MI2 = MX ·MN . First suppose I is the center of γ. Since A, I are symmetric about XY , ∠MAN = ∠MIN .
But P, I,Q are collinear iff ∠MIN = 180◦−α, so because arcs AN and BM sum to 90◦, P, I,Q are collinear
iff arcs BM , MA have the same measure. Let M ′ = CI ∩ ω; then ∠BM ′I = ∠BM ′C = 90◦ − ∠BXI,
so M ′XIBZ is cyclic and ∠M ′XB = ∠M ′IB = 180◦ − ∠BIC = 45◦ = ∠AXY , as desired. (There
are many other ways to finish as well.) Conversely, if P, I,Q are collinear, then by power of a point,
m(m+2t) = MI2−r2 = MX ·MN−r2 = m(m+2t+n)−r2, so mn = r2. But we also have m(n+2t) = uv
and n(m+ 2t) = uw, so

r2 = mn =
uv − r2

2t

uw − r2

2t
=

uv(u+v)
u+v+w

2r cosα

uw(u+w)
u+v+w

2r cosα
=

r2

4 cos2 α

(u+ v)(u+ w)

vw
.

Simplifying using cos2 α = u2

u2+r2 = u(u+v+w)
(u+v)(u+w) , we get

0 = (u+ v)2(u+ w)2 − 4uvw(u+ v + w) = (u(u+ v + w)− vw)2,

which clearly implies (u+ v)2 + (u+ w)2 = (v + w)2, as desired. �

This problem was proposed by David Stoner. This solution was given by Victor Wang.
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N1
Does there exist a strictly increasing infinite sequence of perfect squares a1, a2, a3, ... such that for all k ∈ Z+

we have that 13k|ak + 1?

Jesse Zhang

Solution. We have that 5 is a solution to x2 + 1 = 0 mod 13. Now assume that we have a solution xk to
f(x) = x2 + 1 = 0 mod 13k. Note that f ′(x) = 2x 6= 0 mod 13 clearly, so by Hensel there is a solution
xk+1 to f(x) = x2 + 1 = 0 mod 13k+1. Then just add 13k+1 to xk+1 to make it strictly larger than xk, and
we’re done. �

This problem was proposed by Jesse Zhang. This solution was given by Michael Kural.
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N2
Define the Fibanocci sequence recursively by F1 = 1, F2 = 1 and Fi+2 = Fi + Fi+1 for all i. Prove that for
all integers b, c > 1, there exists an integer n such that the sum of the digits of Fn when written in base b is
greater than c.

Ryan Alweiss

Solution. It’s well known that if N is a positive integer multiple of bk − 1, then the base b digital sum of N
is at least k(b− 1). Now just apply the lemma with k sufficiently large and pick n with bk − 1 | Fn. �

This problem and solution were proposed by Ryan Alweiss.
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N3
Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a
polynomial P , of degree n and with rational coefficients, such that the following property holds: exactly one
of

P (k)

tk
and

P (k)

tk+1

is an integer for each k = 0, 1, ...,m.

Michael Kural

Answer. The maximal value of m is n.

Solution 1. Note that if tk+1 ‖ P (k + 1) and tk ‖ P (k), then tk ‖ P (k + 1) − P (k). A simple induction on
degP then establishes an upper bound of n. To achieve this, simply put P (k) = tk for each 0 ≤ k ≤ n. �

This problem and solution were proposed by Michael Kural.

Solution 2. By Lagrange Interpolation, we can find a polynomial satisfying P (k) = tk for 0 ≤ k ≤ n
with rational coefficients. By Newtonian Interpolation, P (n+ 1) =

∑n
i=0

(
n
i

)
P (i)(−1)n−i. Taking (mod t),

P (n+ 1) = (−1)n · P (0) 6= 0 (mod t). �

This second solution was suggested by Yang Liu.
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N4
Let N denote the set of positive integers, and for a function f , let fk(n) denote the function f applied k
times. Call a function f : N→ N saturated if

ff
f(n)(n)(n) = n

for every positive integer n. Find all positive integers m for which the following holds: every saturated
function f satisfies f2014(m) = m.

Evan Chen

Answer. All m dividing 2014; that is, {1, 2, 19, 38, 53, 106, 1007, 2014}.
Solution. First, it is easy to see that f is both surjective and injective, so f is a permutation of the positive
integers. We claim that the functions f which satisfy the property are precisely those functions which satisfy
fn(n) = n for every n.

For each integer n, let ord(n) denote the smallest integer k such that fk(n). These orders exist since

ff
f(n)(n)(n) = n, so ord(n) ≤ ff(n)(n); in fact we actually have

ord(n) | ff(n)(n) (8.1)

as a consequence of the division algorithm.

Since f is a permutation, it is immediate that ord(n) = ord(f(n)) for every n; this implies easily that
ord(n) = ord

(
fk(n)

)
for every integer k. In particular, ord(n) = ord

(
ff(n)−1(n)

)
. But then, applying (8.1)

to ff(n)−1(n) gives

ord(n) = ord
(
ff(n)−1(n)

)
| ff(f

f(n)−1(n))
(
ff(n)−1(n)

)
= ff

f(n)(n)+f(n)−1(n)

= ff(n)−1
(
ff

f(n)(n)(n)
)

= ff(n)−1(n)

Inductively, then, we are able to show that ord(n) | ff(n)−k(n) for every integer k; in particular, ord(n) |
f0(n) = n, which implies that fn(n) = n. To see that this is actually sufficient, simply note that ord(n) =
ord(f(n)) = · · · , which implies that ord(n) | fk(n) for every k.

In particular, if m | 2014, then ord(m) | m | 2014 and f2014(m) = m. The construction for the other values
of m (showing that they are not forced) is left as an easy exercise. �

This problem and solution were proposed by Evan Chen.

Remark. There are many ways to express the same ideas. For instance, the following approach (“unraveling
indices”) also works: It’s not hard to show that f is a bijection with finite cycles (when viewed as a
permutation). If C = (n0, n1, . . . , n`−1) is one such cycle with f(ni) = ni+1 for all i (extending indices mod

`), then ff
f(n)(n)(n) = n holds on C iff ` | ff(ni)(ni) = ni+ni+1 for all i. But ` | nj =⇒ ` | nj−1+nj = nj−1

for fixed j, so the latter condition holds iff ` | ni for all i. Thus f2014(n) = n is forced unless and only unless
n - 2014.
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N5
Define a beautiful number to be an integer of the form an, where a ∈ {3, 4, 5, 6} and n is a positive integer.
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.

Matthew Babbitt

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 + · · · + an. Then
for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show that a0− (a1 +
· · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong induction on N .
The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one of the
inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with 3 ≤ N ′ < N and then
apply the inductive hypothesis; the construction for N ′ cannot use any of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely natural, it is not
immediately obvious that one should consider 3 ≤ N − (x1 + · · · + xk) < xk + 3 rather than the stronger
bound 3 ≤ N − (x1 + · · ·+xk) < xk. In particular, the solution method above does not work if one attempts
to get the latter.
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N6
Show that the numerator of

2p−1

p+ 1
−

(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
is a multiple of p3 for any odd prime p.

Yang Liu

Solution. Remark (1−kp)2(1+2pk+3p2k2) ≡ 3k4p4−4k3p3+1 ≡ 1 (mod p3), so 1
(1−kp)2 ≡ (1+2pk+3p2k2)

(mod p3). Thus(
p−1∑
k=0

(
p−1
k

)
(1− kp)2

)
≡

p−1∑
k=0

(
p− 1

k

)
(1 + 2pk + 3p2k2) (mod p3)

=

p−1∑
k=0

(
p− 1

k

)
+

p−1∑
k=0

2pk

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= 2p−1 +

p−1∑
k=0

pk

(
p− 1

k

)
+

p−1∑
k=0

p(p− 1− k)

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= 2p−1 +

p−1∑
k=0

p(p− 1)

(
p− 1

k

)
+

p−1∑
k=0

3p2k2
(
p− 1

k

)

= (p2 − p+ 1)2p−1 +

p−1∑
k=0

3p2k2
(
p− 1

k

)

≡ (p2 − p+ 1)2p−1 +

p−1∑
k=0

3p2k2(−1)k (mod p3)

≡ (p2 − p+ 1)2p−1 + 3p3
p− 1

2
(mod p3)

≡ 2p−1

p+ 1
(mod p3)

�

This problem and solution were proposed by Yang Liu.

55 http://www.aops.com/Forum/viewtopic.php?t=547730

http://www.aops.com/Forum/viewtopic.php?t=547730
http://www.aops.com/Forum/viewtopic.php?t=547730


N7 Number Theory – Solutions ELMO 2014

N7
Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then
n+ c divides an + bn + n.

Evan Chen

Answer. (a, b, c) = (1, 1, 2).

Solution. Let p be an arbitrary prime such that p ≥ 2011 · max{abc, 2013}. By the Chinese Remainder
Theorem it is possible to select an integer n satisfying the following properties:

n ≡ −c (mod p)

n ≡ −1 (mod p− 1)

n ≡ −1 (mod q)

for all primes q ≤ 2011 not dividing p − 1. This will guarantee that n is not divisible by any integer less
than 2013. Upon selecting this n, we find that

p | n+ c | an + bn + n

which implies that
an + bn ≡ c (mod p)

But n ≡ −1 (mod p− 1); hence an ≡ a−1 (mod p) by Euler’s Little Theorem. Hence we may write

p | ab(a−1 + b−1 − c) = a+ b− abc.

But since p is large, this is only possible if a+ b− abc is zero. The only triples of positive integers with that
property are (a, b, c) = (2, 2, 1) and (a, b, c) = (1, 1, 2). One can check that of these, only (a, b, c) = (1, 1, 2)
is a valid solution. �

This problem and solution were proposed by Evan Chen.
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N8
Let N denote the set of positive integers. Find all functions f : N→ N such that:

(i) The greatest common divisor of the sequence f(1), f(2), . . . is 1.

(ii) For all sufficiently large integers n, we have f(n) 6= 1 and

f(a)n | f(a+ b)a
n−1

− f(b)a
n−1

for all positive integers a and b.

Yang Liu

Answer. The only such function is the constant function f(b) = b.

Solution. Let (ii) hold for n ≥ C. First we claim f(a) | a for all a. Let p be any prime dividing f(a). Choose
b so that p - f(a+ b), f(b) (possible via (i)). So

p | f(a+ b)a
C−1

− f(b)a
C−1

.

Now let
υp

(
f(a+ b)a

C−1

− f(b)a
C−1
)

= k.

By the divisibility for all n > C,

nυp(f(a)) ≤ υp
(
f(a+ b)a

n−1

− f(b)a
n−1
)

= k + (n− C)υp(a)

by Lifting the Exponent. Now it’s clear that υp(f(a)) ≤ υp(a), so f(a) | a.

Note that for sufficiently large primes p since f(p) | p, and then f(p) 6= 1, f(p) = p. Now plug in a = p, and
by Fermat’s Little Theorem, p | f(b+ p)− f(b) for all b and sufficiently large p. In fact, this then gives that

p | f(b+ kp)− f(b)

for any integer k. Now choose p > b. If f(b+ p) 6= b+ p, then

f(b+ p) ≤ b+ p

2
< p.

But p | f(b + p) − f(b) for all large enough p. Therefore f(b + p) = f(b) for all sufficiently large primes p.
By our condition, f(b) 6= 1 now, so take a prime q | f(b). Then q | b and therefore, q | f(b + p) − f(p) =
f(b) − f(p) =⇒ q | p for any sufficiently large p. So q = 1, contradiction. So f(b + p) = b + p. Since
0 < f(b+ p)− f(b) = b+ p− f(b) < b+ p < 2p and p | f(b+ p)− f(b), f(b) = b for all b. You can check that
this solution works with LTE. �

This problem and solution were proposed by Yang Liu.
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N11
Let p be a prime satisfying p2 | 2p−1 − 1, and let n be a positive integer. Define

f(x) =
(x− 1)p

n − (xp
n − 1)

p(x− 1)
.

Find the largest positive integer N such that there exist polynomials g(x), h(x) with integer coefficients and
an integer r satisfying f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

Answer. The largest possible N is 2pn−1.

Solution 1. Let F (x) = x
1 + · · ·+ xp−1

p−1 .

By standard methods we can show that (x − 1)p
n − (xp

n−1 − 1)p has all coefficients divisible by p2. But
p2 | 2p−1 − 1 means p is odd, so working in Fp, we have

(x− 1)f(x) =

p−1∑
k=1

1

p

(
p

k

)
(−1)k−1xp

n−1k =

p−1∑
k=1

(
p− 1

k − 1

)
(−1)k−1

xp
n−1k

k

=

p−1∑
k=1

xp
n−1k

kpn−1 = F (x)p
n−1

,

where we use Fermat’s little theorem,
(
p−1
k−1
)
≡ (−1)k−1 (mod p) for k = 1, 2, . . . , p− 1, and the well-known

fact that P (xp)− P (x)p has all coefficients divisible by p for any polynomial P with integer coefficients.

However, it is easy to verify that p2 | 2p−1 − 1 if and only if p | F (−1), i.e. −1 is a root of F in Fp.
Furthermore, F ′(x) = xp−1−1

x−1 = (x+ 1)(x+ 2) · · · (x+ p− 2) in Fp, so −1 is a root of F with multiplicity 2;

hence N ≥ 2pn−1. On the other hand, since F ′ has no double roots, F has no integer roots with multiplicity
greater than 2. In particular, N ≤ 2pn−1 (note that the multiplicity of 1 is in fact pn−1 − 1, since F (1) = 0
by Wolstenholme’s theorem but 1 is not a root of F ′). �

This problem and solution were proposed by Victor Wang.

Remark. The rth derivative of a polynomial P evaluated at 1 is simply the coefficient [(x− 1)r]P (i.e. the
coefficient of (x− 1)r when P is written as a polynomial in x− 1) divided by r!.

Solution 2. This is asking to find the greatest multiplicity of an integer root of f modulo p; I claim the
answer is 2pn−1.

First, we shift x by 1 and take the negative (since this doesn’t change the greatest multiplicity) for conve-

nience, redefining f as f(x) = (x+1)p
n
−xpn−1
px .

Now, we expand this. We can show, by writing out and cancelling, that p1 fully divides
(
pn

k

)
only when pn−1

divides k; thus, we can ignore all terms except the ones with degree divisible by pn−1 (since they still go

away when taking it mod p), leaving f(x) = 1
px (
(
pn

pn−1

)
xp

n−pn−1

+ · · ·+
(

pn

pn−pn−1

)
xp

n−1

).

We can also show, by writing out/cancelling, that 1
p

(
pn

kpn−1

)
= 1

p

(
p
k

)
modulo p. Simplifying using this, the

expression above becomes f(x) = 1
px (
(
p
1

)
xp

n−pn−1

+ · · ·+
(
p
p−1
)
xp

n−1

) = 1
px ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Now, we ignore the 1/x for the moment (all it does is reduce the multiplicity of the root at x = 0 by 1) and

just look at the rest, P (x) = 1
p ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Substituting y = xp
n−1

, this becomes 1
p ((y + 1)p − (yp + 1)); since 1

p

(
p
k

)
= 1

k

(
p−1
k−1
)
, this is equal to P (x) =

1
1

(
p−1
0

)
yp−1 + · · ·+ 1

p−1
(
p−1
p−2
)
y. (We work mod p now; the ps can be cancelled before modding out.)
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We now show that P (x) has no integer roots of multiplicity greater than 2, by considering the root multi-
plicities of y times its reversal, or Q(x) = 1

p−1
(
p−1
p−2
)
yp−1 + · · ·+ 1

1

(
p−1
0

)
y.

Note that some polynomial P has a root of multiplicity m at x iff P and its first m − 1 derivatives all
have zeroes at x. (We’re using the formal derivatives here - we can prove this algebraically over Z mod p, if
m < p.) The derivative of Q is

(
p−1
p−2
)
yp−2+ · · ·+

(
p−1
0

)
, or (y+1)p−1−yp−1, which has as a root every residue

except 0 and −1 by Fermat’s little theorem; the second derivative is a constant multiple of (y+1)p−2−yp−2,
which has no integer roots by Fermat’s little theorem and unique inverses. Therefore, no integer root of Q
has multiplicity greater than 2; we know that the factorization of a polynomial’s reverse is just the reverse of
its factorization, and integers have inverses mod p, so P (x) doesn’t have integer roots of multiplicity greater
than 2 either.

Factoring P (x) completely in y (over some extension of Fp), we know that two distinct factors can’t share a
root; thus, at most 2 factors have any given integer root, and since their degrees (in x) are each pn−1, this
means no integer root has multiplicity greater than 2pn−1.

However, we see that y = 1 is a double root of P . This is because plugging in gives P (1) = 1
p ((1 + 1)p −

(1p + 1)) = 1
p (2p − 2); by the condition, p2 divides 2p − 2, so this is zero mod p. Since 1 is its own inverse,

it’s a root of Q as well, and it’s a root of Q’s derivative so it’s a double root (so (y − 1)2 is part of Q’s
factorization). Reversing, (y − 1)2 is part of P ’s factorization as well.

Applying a well-known fact, y − 1 = xp
n−1 − 1 = (x− 1)p

n−1

modulo p, so 1 is a root of P with multiplicity
2pn−1.

Since adding back in the factor of 1/x doesn’t change this multiplicity, our answer is therefore 2pn−1. �

This second solution was suggested by Alex Smith.
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