Ego Loss May Occur

June 2014
Lincoln, Nebraska

ELMO regulation:
 The problems must be kept strictly confidential until disclosed publicly by the ELMO Committee.

The ELMO 2014 committee gratefully acknowledges the receipt of 43 problems from the following 16 authors:

Ryan Alweiss	3 problems
Matthew Babbitt	1 problem
Evan Chen	3 problems
AJ Dennis	1 problem
Shashwat Kishore	1 problem
Michael Kural	1 problem
Allen Liu	2 problems
Yang Liu	7 problems
Sammy Luo	12 problems
Robin Park	4 problems
Bobby Shen	1 problem
David Stoner	3 problems
Kevin Sun	1 problem
Victor Wang	1 problem
David Yang	1 problem
Jesse Zhang	1 problem

This list was last updated on June 30, 2014.I Problems6
1 Algebra 7
1.1 Problem A1, by Ryan Alweiss 7
1.2 Problem A2, by AJ Dennis 7
1.3 Problem A3, by Allen Liu 7
1.4 Problem A4, by Evan Chen 7
1.5 Problem A5, by Ryan Alweiss 8
1.6 Problem A6, by Sammy Luo 8
1.7 Problem A7, by Yang Liu 8
1.8 Problem A8, by David Stoner 8
1.9 Problem A9, by Robin Park 8
2 Combinatorics 9
2.1 Problem C1, by Sammy Luo 9
2.2 Problem C2, by David Yang 9
2.3 Problem C3, by Sammy Luo 9
2.4 Problem C4, by Sammy Luo 10
2.5 Problem C5, by Sammy Luo 10
2.6 Problem C6, by Bobby Shen 10
3 Geometry 11
3.1 Problem G1, by Sammy Luo 11
3.2 Problem G2, by Yang Liu 11
3.3 Problem G3, by Robin Park 11
3.4 Problem G4, by Robin Park 11
3.5 Problem G5, by Sammy Luo 11
3.6 Problem G6, by Yang Liu 12
3.7 Problem G7, by Robin Park 12
3.8 Problem G8, by Sammy Luo 12
3.9 Problem G9, by Sammy Luo 12
3.10 Problem G10, by Sammy Luo 12
3.11 Problem G11, by Yang Liu 13
3.12 Problem G12, by David Stoner 13
3.13 Problem G13, by David Stoner 13
4 Number Theory 14
4.1 Problem N1, by Jesse Zhang 14
4.2 Problem N2, by Ryan Alweiss 14
4.3 Problem N3, by Michael Kural 14
4.4 Problem N4, by Evan Chen 14
4.5 Problem N5, by Matthew Babbitt 14
4.6 Problem N6, by Yang Liu 15
4.7 Problem N7, by Evan Chen 15
4.8 Problem N8, by Yang Liu 15
4.9 Problem N9, by Shashwat Kishore 15
4.10 Problem N10, by Yang Liu 16
4.11 Problem N11, by Victor Wang 16
II Solutions 17
5 Algebra 18
5.1 Solution to A2 18
5.2 Solution to A3 19
5.3 Solution to A4 21
5.4 Solution to A6 23
5.5 Solution to A7 24
5.6 Solution to A8 25
5.7 Solution to A9 26
6 Combinatorics 27
6.1 Solution to C1 27
6.2 Solution to C2 28
6.3 Solution to C3 30
6.4 Solution to C4 32
6.5 Solution to C6 34
7 Geometry 36
7.1 Solution to G1 36
7.2 Solution to G2 37
7.3 Solution to G3 38
7.4 Solution to G4 39
7.5 Solution to G5 40
7.6 Solution to G6 41
7.7 Solution to G7 42
7.8 Solution to G8 43
7.9 Solution to G9 44
7.10 Solution to G10 45
7.11 Solution to G11 46
7.12 Solution to G12 48
7.13 Solution to G13 49
8 Number Theory 50
8.1 Solution to N1 50
8.2 Solution to N2 51
8.3 Solution to N3 52
8.4 Solution to N4 53
8.5 Solution to N5 54
8.6 Solution to N6 55
8.7 Solution to N7 56
8.8 Solution to N8 57
8.9 Solution to N11 58

Part I

Problems

Algebra

A1

A4

Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

$$
\begin{aligned}
f(x+f(y)) & =g(x)+h(y) \\
g(x+g(y)) & =h(x)+f(y) \\
h(x+h(y)) & =f(x)+g(y)
\end{aligned}
$$

for all real numbers x and y. (We say a function F is injective if $F(a) \neq F(b)$ for any distinct real numbers a and b.)
Evan Chen

A5

Let \mathbb{R}^{*} denote the set of nonzero reals. Find all functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ satisfying

$$
f\left(x^{2}+y\right)+1=f\left(x^{2}+1\right)+\frac{f(x y)}{f(x)}
$$

for all $x, y \in \mathbb{R}^{*}$ with $x^{2}+y \neq 0$.
Ryan Alweiss

Let a, b, c be positive reals such that $a+b+c=a b+b c+c a$. Prove that

$$
(a+b)^{a b-b c}(b+c)^{b c-c a}(c+a)^{c a-a b} \geq a^{c a} b^{a b} c^{b c} .
$$

Sammy Luo

A7

Find all positive integers n with $n \geq 2$ such that the polynomial

$$
P\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}+a_{2}^{n}+\ldots+a_{n}^{n}-n a_{1} a_{2} \ldots a_{n}
$$

in the n variables $a_{1}, a_{2}, \ldots, a_{n}$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients.
Yang Liu

A8

Let a, b, c be positive reals with $a^{2014}+b^{2014}+c^{2014}+a b c=4$. Prove that

$$
\frac{a^{2013}+b^{2013}-c}{c^{2013}}+\frac{b^{2013}+c^{2013}-a}{a^{2013}}+\frac{c^{2013}+a^{2013}-b}{b^{2013}} \geq a^{2012}+b^{2012}+c^{2012}
$$

David Stoner

A9

Let a, b, c be positive reals. Prove that

$$
\sqrt{\frac{a^{2}\left(b c+a^{2}\right)}{b^{2}+c^{2}}}+\sqrt{\frac{b^{2}\left(c a+b^{2}\right)}{c^{2}+a^{2}}}+\sqrt{\frac{c^{2}\left(a b+c^{2}\right)}{a^{2}+b^{2}}} \geq a+b+c .
$$

Robin Park

Combinatorics

C2

A $2^{2014}+1$ by $2^{2014}+1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer n greater than 2 , there do not exist pairwise distinct black squares $s_{1}, s_{2}, \ldots, s_{n}$ such that s_{i} and s_{i+1} share an edge for $i=1,2, \ldots, n$ (here $s_{n+1}=s_{1}$).
What is the maximum possible number of filled black squares?
David Yang

C3

We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with center X mapping every point in S other than X to another point in S (possibly the same point).
(a) Fix an integer n. Prove that if $n \geq 2$, then any line segment $\overline{A B}$ contains a unique very set S of size n such that $A, B \in S$.
(b) Find the largest possible size of a very set not contained in any line.
(Here, an inversion with center O and radius r sends every point P other than O to the point P^{\prime} along ray $O P$ such that $O P \cdot O P^{\prime}=r^{2}$.)
Sammy Luo

C4

Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every b years,
(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $r b$ years in which the column is initially empty. Determine, in terms of r and b, the number of blocks in the column at the end.
(b) Now suppose r and b are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t=r, 2 r, \ldots,(b-1) r$ years, while a blue block falls at times $t=b, 2 b, \ldots,(r-1) b$ years. Prove that at time $t=r b$, the number of blocks in the column is $|1+2(r-1)(b+r)-8 S|$, where

$$
S=\left\lfloor\frac{2 r}{r+b}\right\rfloor+\left\lfloor\frac{4 r}{r+b}\right\rfloor+\ldots+\left\lfloor\frac{(r+b-1) r}{r+b}\right\rfloor
$$

Sammy Luo

C5

Let n be a positive integer. For any k, denote by a_{k} the number of permutations of $\{1,2, \ldots, n\}$ with exactly k disjoint cycles. (For example, if $n=3$ then $a_{2}=3$ since $(1)(23),(2)(31),(3)(12)$ are the only such permutations.) Evaluate

$$
a_{n} n^{n}+a_{n-1} n^{n-1}+\cdots+a_{1} n
$$

Sammy Luo

C6

Let f_{0} be the function from \mathbb{Z}^{2} to $\{0,1\}$ such that $f_{0}(0,0)=1$ and $f_{0}(x, y)=0$ otherwise. For each positive integer m, let $f_{m}(x, y)$ be the remainder when

$$
f_{m-1}(x, y)+\sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j, y+k)
$$

is divided by 2. Finally, for each nonnegative integer n, let a_{n} denote the number of pairs (x, y) such that $f_{n}(x, y)=1$. Find a closed form for a_{n}.

Bobby Shen

Geometry

G2

$A B C D$ is a cyclic quadrilateral inscribed in the circle ω. Let $A B \cap C D=E, A D \cap B C=F$. Let ω_{1}, ω_{2} be the circumcircles of $A E F, C E F$, respectively. Let $\omega \cap \omega_{1}=G, \omega \cap \omega_{2}=H$. Show that $A C, B D, G H$ are concurrent.

Yang Liu

G3

Let $A_{1} A_{2} A_{3} \cdots A_{2013}$ be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon, there exists a point $Q \neq P$ such that $\frac{A_{i} P}{A_{i} Q}$ is constant for $i \in\{1,2,3, \cdots, 2013\}$.

Robin Park

G4

Let $A B C D$ be a quadrilateral inscribed in circle ω. Define $E=A A \cap C D, F=A A \cap B C, G=B E \cap \omega$, $H=B E \cap A D, I=D F \cap \omega$, and $J=D F \cap A B$. Prove that $G I, H J$, and the B-symmedian are concurrent. Robin Park

G5

Let P be a point in the interior of an acute triangle $A B C$, and let Q be its isogonal conjugate. Denote by ω_{P} and ω_{Q} the circumcircles of triangles $B P C$ and $B Q C$, respectively. Suppose the circle with diameter $\overline{A P}$ intersects ω_{P} again at M, and line $A M$ intersects ω_{P} again at X. Similarly, suppose the circle with diameter $\overline{A Q}$ intersects ω_{Q} again at N, and line $A N$ intersects ω_{Q} again at Y.

Prove that lines $M N$ and $X Y$ are parallel. (Here, the points P and Q are isogonal conjugates with respect to $\triangle A B C$ if the internal angle bisectors of $\angle B A C, \angle C B A$, and $\angle A C B$ also bisect the angles $\angle P A Q, \angle P B Q$, and $\angle P C Q$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)
Sammy Luo

G6

Let $A B C D$ be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles $A O B$ and $C O D$ meet again at G, while the circumcircles of triangles $A O D$ and $B O C$ meet again at H. Let ω_{1} denote the circle passing through G as well as the feet of the perpendiculars from G to $A B$ and $C D$. Define ω_{2} analogously as the circle passing through H and the feet of the perpendiculars from H to $B C$ and $D A$. Show that the midpoint of $G H$ lies on the radical axis of ω_{1} and ω_{2}.

Yang Liu

G7

Let $A B C$ be a triangle inscribed in circle ω with center O; let ω_{A} be its A-mixtilinear incircle, ω_{B} be its B-mixtilinear incircle, ω_{C} be its C-mixtilinear incircle, and X be the radical center of $\omega_{A}, \omega_{B}, \omega_{C}$. Let A^{\prime}, B^{\prime}, C^{\prime} be the points at which $\omega_{A}, \omega_{B}, \omega_{C}$ are tangent to ω. Prove that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ and $O X$ are concurrent. Robin Park

G8

In triangle $A B C$ with incenter I and circumcenter O, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of tangency of its circumcircle with its A, B, C-mixtilinear circles, respectively. Let ω_{A} be the circle through A^{\prime} that is tangent to $A I$ at I, and define ω_{B}, ω_{C} similarly. Prove that $\omega_{A}, \omega_{B}, \omega_{C}$ have a common point X other than I, and that $\angle A X O=\angle O X A^{\prime}$.

Sammy Luo

G9

Let P be a point inside a triangle $A B C$ such that $\angle P A C=\angle P C B$. Let the projections of P onto $B C, C A$, and $A B$ be X, Y, Z respectively. Let O be the circumcenter of $\triangle X Y Z, H$ be the foot of the altitude from B to $A C, N$ be the midpoint of $A C$, and T be the point such that $T Y P O$ is a parallelogram. Show that $\triangle T H N$ is similar to $\triangle P B C$.
Sammy Luo

G10

We are given triangles $A B C$ and $D E F$ such that $D \in B C, E \in C A, F \in A B, A D \perp E F, B E \perp F D, C F \perp$ $D E$. Let the circumcenter of $D E F$ be O, and let the circumcircle of $D E F$ intersect $B C, C A, A B$ again at R, S, T respectively. Prove that the perpendiculars to $B C, C A, A B$ through D, E, F respectively intersect at a point X, and the lines $A R, B S, C T$ intersect at a point Y, such that O, X, Y are collinear.

[^0]
G11

Let $A B C$ be a triangle with circumcenter O. Let P be a point inside $A B C$, so let the points D, E, F be on $B C, A C, A B$ respectively so that the Miquel point of $D E F$ with respect to $A B C$ is P. Let the reflections of D, E, F over the midpoints of the sides that they lie on be R, S, T. Let the Miquel point of $R S T$ with respect to the triangle $A B C$ be Q. Show that $O P=O Q$.
Yang Liu

G12

Let $A B=A C$ in $\triangle A B C$, and let D be a point on segment $A B$. The tangent at D to the circumcircle ω of $B C D$ hits $A C$ at E. The other tangent from E to ω touches it at F, and $G=B F \cap C D, H=A G \cap B C$. Prove that $B H=2 H C$.

David Stoner

G13

Let $A B C$ be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch $A B, A C, B C$ at X, Y, Z respectively. Let $X Y$ hit $\operatorname{arcs} A B, A C$ of ω at M, N respectively, and let $P \neq X, Q \neq Y$ be the points on γ such that $M P=M X, N Q=N Y$. If I is the center of γ, prove that P, I, Q are collinear if and only if $\angle B A C=90^{\circ}$.

David Stoner

Number Theory

N1
Does there exist a strictly increasing infinite sequence of perfect squares $a_{1}, a_{2}, a_{3}, \ldots$ such that for all $k \in \mathbb{Z}^{+}$ we have that $13^{k} \mid a_{k}+1$?
Jesse Zhang

Define a beautiful number to be an integer of the form a^{n}, where $a \in\{3,4,5,6\}$ and n is a positive integer. Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers. Matthew Babbitt

N9

Let d be a positive integer and let ε be any positive real. Prove that for all sufficiently large primes p with $\operatorname{gcd}(p-1, d) \neq 1$, there exists an positive integer less than p^{r} which is not a d th power modulo p, where r is defined by

$$
\log r=\varepsilon-\frac{1}{\operatorname{gcd}(d, p-1)} .
$$

Shashwat Kishore

N10

Find all positive integer bases $b \geq 9$ so that the number

$$
\frac{\overbrace{11 \cdots 1}^{n-1} 0 \overbrace{77 \cdots 7}^{1^{\prime} s} 8 \overbrace{11 \cdots 1_{b}}^{n-1}}{3}
$$

is a perfect cube in base 10 for all sufficiently large positive integers n.
Yang Liu

N11

Let p be a prime satisfying $p^{2} \mid 2^{p-1}-1$, and let n be a positive integer. Define

$$
f(x)=\frac{(x-1)^{p^{n}}-\left(x^{p^{n}}-1\right)}{p(x-1)} .
$$

Find the largest positive integer N such that there exist polynomials $g(x), h(x)$ with integer coefficients and an integer r satisfying $f(x)=(x-r)^{N} g(x)+p \cdot h(x)$.
Victor Wang

Part II

Solutions

A2

Given positive reals a, b, c, p, q satisfying $a b c=1$ and $p \geq q$, prove that

$$
p\left(a^{2}+b^{2}+c^{2}\right)+q\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq(p+q)(a+b+c) .
$$

AJ Dennis

Solution 1. First, note it suffices to prove that sum $a^{2}+a^{-1}$ is at least twice sum a; in other words, the case $p=q$. Just multiply both sides by q and add $p-q$ times the inequality sum a^{2} is at least sum a, which is due to Cauchy and $a+b+c \geq 3$.
So we must show that $a^{2}+b^{2}+c^{2}+1 / a+1 / b+1 / c \geq 2(a+b+c)$. However, we have that $1 / a+1 / b+1 / c \geq 3$ by AM-GM. So it suffices to have $a^{2}+b^{2}+c^{2}+1+1+1 \geq 2 a+2 b+2 c$, but $a^{2}+1 \geq 2 a$ and similar so this is obvious.

Solution 2. Note $\sum a^{2} \geq \sum b c=\sum a^{-1}$ by AM-GM (or Cauchy-Schwarz), so $L H S \geq \frac{p+q}{2}\left(\sum a^{2}+\sum b c\right)$. But

$$
\sum a^{2}+\sum b c=\sum\left(a^{2}+\frac{1}{2}(a b+a c)\right) \geq 2 \sum a^{3 / 2} b^{1 / 4} c^{1 / 4}=2 \sum a^{5 / 4}
$$

Now we can finish by weighted AM-GM or (weighted) CS/Holder to get $\sum a^{5 / 4} \geq \sum a$, implying the result.

This problem and its solutions were proposed by AJ Dennis.

A3

Let a, b, c, d, e, f be positive real numbers. Given that $d e f+d e+e f+f d=4$, show that

$$
((a+b) d e+(b+c) e f+(c+a) f d)^{2} \geq 12(a b d e+b c e f+c a f d)
$$

Allen Liu

Solution 1. First, some beginning stuff. Note that the condition implies that $d=\frac{2 m}{n+p}, e=\frac{2 n}{m+p}, f=$ $\frac{2 p}{m+n} \quad(*)$.
Also, the inequality $(a+b+c)^{2} \geq(2 \cos (X)+2) \cdot a b+(2 \cos (Y)+2) \cdot a c+(2 \cos (Z)+2) \cdot b c$, where X, Y, Z are angles of a triangle. (Note hard, just use quadratic discriminants).
Now rewrite the LHS as $(a(d e+d f)+b(d e+e f)+c(d f+e f))^{2}$ and then substitute $A=a(d e+d f), B=$ $b(d e+e f), C=c(d f+e f)$. Then, the inequality becomes $(A+B+C)^{2} \geq 12 \sum_{c y c} \frac{B C}{(d+e)(d+f)}$. So now it suffices to find a triangle such that

$$
\frac{12}{(d+e)(d+f)} \leq 2 \cos (X)+2
$$

and its cyclic counterparts hold. But note that if the triangle has side lengths $y+z, x+z, x+y$, then $2 \cos (X)+2=4 \frac{x(x+y+z)}{(x+y)(x+z)}$.
So we need

$$
\frac{3}{(d+e)(d+f)} \leq \frac{x(x+y+z)}{(x+y)(x+z)}
$$

So substitute in $(*)$ to get the equivalent statement

$$
\frac{3(m+n)(m+p)(n+p)^{2}}{\left(m^{2}+m p+n^{2}+n p\right)\left(m^{2}+m n+p^{2}+n p\right)} \leq 4 \frac{x(x+y+z)}{(x+y)(x+z)}
$$

So choose $x=n p(n+p), y=m p(m+p), z=m n(m+n)$. It is not hard to show that the above inequality reduces to

$$
4(m n(m+n)+m p(m+p)+n p(n+p)) \geq 3(m+n)(m+p)(n+p)
$$

, which is immediate by expansion.
This problem and solution were proposed by Allen Liu.
Solution 2. Note that $d e+e f+f e \geq 3$, so we have:

$$
\begin{gathered}
(e+f)^{2}(d+f)(e+d) \geq\left(3+d^{2}\right)(e+f)^{2} \\
\Longrightarrow[(e+f)(d+f)-3][(e+d)(e+f)-3] \geq[3-d(e+f)]^{2}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& 4\left[\frac{1}{(e+f)(d+f)}-\frac{3}{(e+f)^{2}(d+f)^{2}}\right]\left[\frac{1}{(e+d)(e+f)}-\frac{3}{(e+d)^{2}(e+f)^{2}}\right] \\
\geq & {\left[\frac{1}{(d+f)(f+e)}+\frac{1}{(d+e)(e+f)}-\frac{1}{(d+e)(d+f)}-\frac{6}{(d+e)(d+f)(e+f)^{2}}\right]^{2} }
\end{aligned}
$$

Therefore the quadratic expression:

$$
\begin{aligned}
& y^{2}\left[\frac{1}{(e+f)(d+f)}-\frac{3}{(e+f)^{2}(d+f)^{2}}\right] \\
+ & y z\left[\frac{1}{(d+f)(f+e)}+\frac{1}{(d+e)(e+f)}-\frac{1}{(d+e)(d+f)}-\frac{6}{(d+e)(d+f)(e+f)^{2}}\right] \\
+ & z^{2}\left[\frac{1}{(e+d)(e+f)}-\frac{3}{(e+d)^{2}(e+f)^{2}}\right]
\end{aligned}
$$

is always nonnegative. (The y^{2} and constant coefficients are positive). So:

$$
\begin{aligned}
& (y+z)\left[\frac{y}{(d+f)(e+f)}+\frac{z}{(d+e)(e+f)}\right] \geq \frac{y z}{e+f}+3\left(\frac{y}{(d+e)}+\frac{z}{(d+f)}\right)^{2} \\
\Longrightarrow & 4\left[(y+z)^{2}-\frac{12 y z}{(d+e)(d+f)}\right] \geq\left[2(y+z)-\frac{12 y}{(d+f)(e+f)}-\frac{12 z}{(d+e)(e+f)}\right]^{2} .
\end{aligned}
$$

So the quadratic expression:

$$
x^{2}+x\left[2 y+2 z-\frac{12 y}{(d+f)(e+f)}-\frac{12 z}{(f+e)(e+f)}\right]+y^{2}+c^{2}+2 y z-\frac{12 y z}{(d+e)(d+f)}
$$

is always nonnegative. (The x^{2} and constant coefficients are positive). So:

$$
(x+y+z)^{2} \geq \sum_{\mathrm{cyc}} \frac{x}{(d+e)(d+f)}
$$

which is precisely what we want to show. (Let $x=a(d e+d f)$, et cetera.)
This second solution was suggested by David Stoner.

A4

Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

$$
\begin{aligned}
f(x+f(y)) & =g(x)+h(y) \\
g(x+g(y)) & =h(x)+f(y) \\
h(x+h(y)) & =f(x)+g(y)
\end{aligned}
$$

for all real numbers x and y. (We say a function F is injective if $F(a) \neq F(b)$ for any distinct real numbers a and b.)
Evan Chen

Answer. For all real numbers $x, f(x)=g(x)=h(x)=x+C$, where C is an arbitrary real number.
Solution 1. Let a, b, c denote the values $f(0), g(0)$ and $h(0)$. Notice that by putting $y=0$, we can get that $f(x+a)=g(x)+c$, etc. In particular, we can write

$$
h(y)=f(y-c)+b
$$

and

$$
g(x)=h(x-b)+a=f(x-b-c)+a+b
$$

So the first equation can be rewritten as

$$
f(x+f(y))=f(x-b-c)+f(y-c)+a+2 b
$$

At this point, we may set $x=y-c-f(y)$ and cancel the resulting equal terms to obtain

$$
f(y-f(y)-(b+2 c))=-(a+2 b)
$$

Since f is injective, this implies that $y-f(y)-(b+2 c)$ is constant, so that $y-f(y)$ is constant. Thus, f is linear, and $f(y)=y+a$. Similarly, $g(x)=x+b$ and $h(x)=x+c$.
Finally, we just need to notice that upon placing $x=y=0$ in all the equations, we get $2 a=b+c, 2 b=c+a$ and $2 c=a+b$, whence $a=b=c$.
So, the family of solutions is $f(x)=g(x)=h(x)=x+C$, where C is an arbitrary real. One can easily verify these solutions are valid.
This problem and solution were proposed by Evan Chen.
Remark. Although it may look intimidating, this is not a very hard problem. The basic idea is to view $f(0), g(0)$ and $h(0)$ as constants, and write the first equation entirely in terms of $f(x)$, much like we would attempt to eliminate variables in a standard system of equations. At this point we still had two degrees of freedom, x and y, so it seems likely that the result would be easy to solve. Indeed, we simply select x in such a way that two of the terms cancel, and the rest is working out details.
Solution 2. First note that plugging $x=f(a), y=b ; x=f(b), y=a$ into the first gives $g(f(a))+h(b)=$ $g(f(b))+h(a) \Longrightarrow g(f(a))-h(a)=g(f(b))-h(b)$. So $g(f(x))=h(x)+a_{1}$ for a constant a_{1}. Similarly, $h(g(x))=f(x)+a_{2}, f(h(x))=g(x)+a_{3}$.
Now, we will show that $h(h(x))-f(x)$ and $h(h(x))-g(x)$ are both constant. For the second, just plug in $x=0$ to the third equation. For the first, let $x=a_{3}, y=k$ in the original to get $g(f(h(k)))=h\left(a_{3}\right)+f(k)$. But $g(f(h(k)))=h(h(k))+a_{1}$, so $h(h(k))-f(k)=h\left(a_{3}\right)-a_{1}$ is constant as desired.
Now $f(x)-g(x)$ is constant, and by symmetry $g(x)-h(x)$ is also constant. Now let $g(x)=f(x)+p, h(x)=$ $f(x)+q$. Then we get:

$$
\begin{aligned}
f(x+f(y)) & =f(x)+f(y)+p+q \\
f(x+f(y)+p) & =f(x)+f(y)+q-p \\
f(x+f(y)+q) & =f(x)+f(y)+p-q
\end{aligned}
$$

Now plugging in (x, y) and (y, x) into the first one gives $f(x+f(y))=f(y+f(x)) \Longrightarrow f(x)-x=f(y)-y$ from injectivity, $f(x)=x+c$. Plugging this in gives $2 p=q, 2 q=p, p+q=0$ so $p=q=0$ and $f(x)=x+c, g(x)=x+c, h(x)=x+c$ for a constant c are the only solutions.
This second solution was suggested by David Stoner.
Solution 3. By putting $(x, y)=(0, a)$ we derive that $f(f(a))=g(0)+h(a)$ for each a, and the analogous counterparts for g and h. Thus we can derive from $(x, y)=(t, g(t))$ that

$$
\begin{aligned}
h(f(t)+h(g(t))) & =f(f(t))+g(g(t)) \\
& =g(0)+h(t)+h(0)+f(t) \\
& =f(f(0))+g(t+g(t)) \\
& =h(f(0)+h(t+g(t)))
\end{aligned}
$$

holds for all t. Thus by injectivity of h we derive that

$$
\begin{equation*}
f(x)+h(g(x))=f(0)+h(x+g(x)) \tag{*}
\end{equation*}
$$

holds for every x.
Now observe that placing $(x, y)=(g(a), a)$ gives

$$
g(2 g(a))=g(g(a)+g(a))=h(g(a))+f(a)
$$

while placing $(x, y)=(g(a)+a, 0)$ gives

$$
g(g(a)+a+g(0))=h(a+g(a))+f(0) .
$$

Equating this via (*) and applying injectivity of g again, we find that

$$
2 g(a)=g(a)+a+g(0)
$$

for each a, whence $g(x)=x+b$ for some real number b. We can now proceed as in the earlier solutions.
This third solution was suggested by Mehtaab Sawhney.
Solution 4. In the first given, let $x=a+g(0)$ and $y=b$ to obtain

$$
f(a+g(0)+f(b))=g(a+g(0))+h(b)=h(a)+h(b)+f(0)
$$

Swapping the roles of a and b, we discover that

$$
f(b+g(0)+f(a))=f(a+g(0)+f(b)) .
$$

But f is injective; this implies $f(x)-x$ is constant, and we can the proceed as in the previous solutions.
This fourth solution was suggested by alibez.

A6

Let a, b, c be positive reals such that $a+b+c=a b+b c+c a$. Prove that

$$
(a+b)^{a b-b c}(b+c)^{b c-c a}(c+a)^{c a-a b} \geq a^{c a} b^{a b} c^{b c}
$$

Sammy Luo

Solution 1. Note $f(x)=x \log x$ is convex. The key step: weighted Popoviciu gives

$$
b f(a)+c f(b)+a f(c)+(a+b+c) f\left(\frac{b c+c a+a b}{a+b+c}\right) \geq \sum_{\mathrm{cyc}}(b+c) f\left(\frac{a b+b c}{b+c}\right)
$$

Exponentiating gives

$$
\begin{gathered}
a^{a b} \cdot b^{b c} \cdot c^{c a} \cdot\left(\frac{b c+c a+a b}{a+b+c}\right)^{b c+c a+a b} \geq \prod_{\mathrm{cyc}}\left(\frac{b(c+a)}{b+c}\right)^{b c+a b} \\
=\prod_{\mathrm{cyc}} a^{a b+c a}(b+c)^{a b+c a-b c-a b}
\end{gathered}
$$

Cancelling some terms and using $\frac{b c+c a+a b}{a+b+c}=1$ gives

$$
1 \geq \prod_{\text {cyc }} a^{c a}(a+b)^{b c-a b}
$$

which rearranges to the result.
This problem and solution were proposed by Sammy Luo.
Solution 2. Let $a+b+c=a b+b c+c a=S$. We have

$$
\prod_{\mathrm{cyc}}\left(\frac{b(a+c)}{a+b}\right)^{a b} \leq \frac{1}{S} \sum_{\mathrm{cyc}} \frac{a b^{2}(a+c)}{a+b} \leq 1
$$

Where the last is true because:

$$
(a b+b c+c a)^{2}-(a+b+c)\left[\sum_{\mathrm{cyc}} \frac{a b^{2}(a+c)}{a+b}\right]=\frac{a b c\left(\sum_{\mathrm{cyc}} a^{3} b-\sum a^{2} b c\right)}{(a+b)(b+c)(c+a)} \geq 0
$$

as desired.
This second solution was suggested by David Stoner.

A7

Find all positive integers n with $n \geq 2$ such that the polynomial

$$
P\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}+a_{2}^{n}+\ldots+a_{n}^{n}-n a_{1} a_{2} \ldots a_{n}
$$

in the n variables $a_{1}, a_{2}, \ldots, a_{n}$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients.
Yang Liu

Answer. The permissible values are $n=2$ and $n=3$.
Solution. For $n=2$ and $n=3$ we respectively have the factorizations $\left(a_{1}-a_{2}\right)^{2}$ and

$$
\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right)\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}\right)
$$

For $n \geq 4$, we view P at as a polynomial in a_{1} and note that the constant term is $a_{2}^{n}+a_{3}^{n}+\ldots+a_{n}^{n}$. So this polynomial must be reducible. We can set $a_{5}, a_{6}, \ldots, a_{n}=0$, so now we need for $a_{2}^{n}+a_{3}^{n}+a_{4}^{n}$ to be irreducible over \mathbb{C}. Let $a=a_{2}, b=a_{3}, c=a_{4}$. Now we look at it as a polynomial in a, and it factors as

$$
\prod_{i=1}^{n}\left(a+\omega_{i} \cdot \sqrt[n]{b^{n}+c^{n}}\right)
$$

where the ω_{i} are the necessary roots of unity. Now we look how we can split this into two polynomials and look at their respective constant terms. So the constant terms would be $\omega\left(b^{n}+c^{n}\right)^{\frac{k}{n}}$ for some $0<k<n$, and some root of unity ω. So the previous expression must be a polynomial, say $Q(x)$. But $\left(b^{n}+c^{n}\right)^{k}=Q(x)^{n}$. On the right-hand side, each root has multiplicity n, but since $b^{n}+c^{n}$ has no double roots, all roots on the left-hand side have multiplicity $k<n$, contradiction.
This problem and solution were proposed by Yang Liu.

A8

Let a, b, c be positive reals with $a^{2014}+b^{2014}+c^{2014}+a b c=4$. Prove that

$$
\frac{a^{2013}+b^{2013}-c}{c^{2013}}+\frac{b^{2013}+c^{2013}-a}{a^{2013}}+\frac{c^{2013}+a^{2013}-b}{b^{2013}} \geq a^{2012}+b^{2012}+c^{2012}
$$

David Stoner

Solution. The problem follows readily from the following lemma.
Lemma 1. Let x, y, z be positive reals, not all strictly on the same side of 1 . Then $\sum \frac{x}{y}+\frac{y}{x} \geq \sum x+\frac{1}{x}$.
Proof. WLOG $(x-1)(y-1) \leq 0$; then

$$
(x+y+z-1)\left(x^{-1}+y^{-1}+z^{-1}-1\right) \geq(x y+z)\left(x^{-1} y^{-1}+z\right) \geq 4
$$

by Cauchy. Alternatively, if $x, y \geq 1 \geq z$, one may smooth z up to 1 (e.g. by differentiating with respect to z and observing that $x^{-1}+y^{-1}-1 \leq x+y-1$) to reduce the inequality to $\frac{x}{y}+\frac{y}{x} \geq 2$.

Now simply note that $\sum a^{2013}+a^{-2013} \geq \sum a^{2012}+a^{-2012}$.
This problem and solution were proposed by David Stoner.
Remark. An earlier (and harder) version of the problem asked to prove that

$$
\left(\sum_{\mathrm{cyc}} a\left(a^{2}+b c\right)\right)\left(\sum_{\mathrm{cyc}}\left(\frac{a}{b}+\frac{b}{a}\right)\right) \geq\left(\sum_{\mathrm{cyc}} \sqrt{(a+1)\left(a^{3}+b c\right)}\right)\left(\sum_{\mathrm{cyc}} \sqrt{a(a+1)(a+b c)}\right)
$$

However, it was vetoed by the benevolent dictator.
Here is the solution to the harder version. Let $s_{i}=a^{i}+b^{i}+c^{i}$ and $p=a b c$. The key is to Cauchy out s_{3} 's from the RHS and use the lemma (in the form $s_{1} s_{-1}-3 \geq s_{1}+s_{-1}$) on the LHS to reduce the problem to

$$
\left(s_{1}+s_{-1}\right)^{2}\left(s_{3}+3 p\right)^{2} \geq\left(3+s_{1}\right)\left(3+s_{-1}\right)\left(s_{3}+p s_{-1}\right)\left(s_{3}+p s_{1}\right)
$$

By AM-GM on the RHS, it suffices to prove

$$
\frac{\frac{s_{1}+s_{-1}}{2}+\frac{s_{1}+s_{-1}}{2}}{\frac{s_{1}+s_{-1}}{2}+3} \geq \frac{s_{3}+p \frac{s_{1}+s_{-1}}{2}}{s_{3}+3 p}
$$

or equivalently, since $\frac{s_{1}+s_{-1}}{2} \geq 3$, that $\frac{s_{3}}{p} \geq \frac{s_{1}+s_{-1}}{2}$. By the lemma, this boils down to $2 \sum_{\text {cyc }} a^{3} \geq$ $\sum_{\text {cyc }} a\left(b^{2}+c^{2}\right)$, which is obvious.

A9

Let a, b, c be positive reals. Prove that

$$
\sqrt{\frac{a^{2}\left(b c+a^{2}\right)}{b^{2}+c^{2}}}+\sqrt{\frac{b^{2}\left(c a+b^{2}\right)}{c^{2}+a^{2}}}+\sqrt{\frac{c^{2}\left(a b+c^{2}\right)}{a^{2}+b^{2}}} \geq a+b+c
$$

Robin Park

Remark. Equality occurs not only at $a=b=c$ but also when $a=b$ and $c=0$.
Solution. By Holder,

$$
\left(\sum_{\mathrm{cyc}} \sqrt{\frac{a^{2}\left(a^{2}+b c\right)}{b^{2}+c^{2}}}\right)^{2}\left(\sum_{\mathrm{cyc}} a\left(a^{2}+b c\right)^{2}\left(b^{2}+c^{2}\right)\right) \geq\left(\sum_{\mathrm{cyc}} a\left(a^{2}+b c\right)\right)^{3}
$$

So we need to prove that

$$
\left(\sum_{\text {cyc }} a\left(a^{2}+b c\right)\right)^{3} \geq(a+b+c)^{2}\left(\sum_{\text {cyc }} a\left(a^{2}+b c\right)^{2}\left(b^{2}+c^{2}\right)\right)
$$

Expanding this gives the following triangle in Chinese Dumbass Notation.

This is the sum of the following seven inequalities:

$$
\begin{aligned}
& 0 \leq \sum_{\text {cyc }} a^{5}\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right) \\
& 0 \leq \sum_{\text {cyc }} b^{3} c^{3}(b+c)(b-c)^{2} \\
& 0 \leq \sum_{\text {cyc }} 3 a b c \cdot a^{4}(a-b)(a-c) \\
& 0 \leq \sum_{\text {cyc }} 2 a b c \cdot a^{2}\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right) \\
& 0 \leq \sum_{\text {cyc }} 2 a b c \cdot\left(b^{4}+c^{4}+2 b c\left(b^{2}+c^{2}\right)\right)(b-c)^{2} \\
& 0 \leq \sum_{\text {cyc }} 17(a b c)^{2} \cdot a(a-b)(a-c) \\
& 0 \leq \sum_{\text {cyc }} 6(a b c)^{2} \cdot a(b-c)^{2} .
\end{aligned}
$$

Hence we're done.
This problem was proposed by Robin Park. This solution was given by Evan Chen.

C1

You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.
2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead ends up.
3. Do either of the above, switching the roles of the words "magenta" and "left" with those of "yellow" and "right", respectively.
4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, appearing somewhere in the circle, and swap the orders of each pair.
5. Remove four consecutive beads of one color.

Starting with the circle: "yellow, yellow, magenta, magenta, cyan, cyan, cyan", determine whether or not you can reach a) "yellow, magenta, yellow, magenta, cyan, cyan, cyan", b) "cyan, yellow, cyan, magenta, cyan", c) "magenta, magenta, cyan, cyan, cyan", d) "yellow, cyan, cyan, cyan".

Sammy Luo

Solution. So represent the beads in a string; write j for ma[u]j[/u]enta, i for $[u] i[/ u] e l l o w, ~ C ~ f o r ~ c y a n . ~ A l s o, ~$ write k as a shorthand for $i j$, and 1 for (no beads). So $C i=j C, C j=k C, C k=i C$. Also, $i i i i=j j j j=1$, $i j \ldots i j=j i \ldots j i$
We are reminded of quaternion multiplication. So what's C ? We could ignore this question by moving all the C s together; instead, we interpret the string as a series of operations (applied from left to right) to perform on a quaternion. Note that if a yellow bead corresponds to left multiplying by i and a magenta bead by j, i.e. an i in the string transforms $x=a+b i+c j+d k$ to $i x=-b+a i-d j+c k$, where $a, b, c, d \in \mathbb{R}$, then the operation $C(x)=a+c i+d j+b k$ that cyclicly permutes the i, j, k components satisfies

$$
i(C(x))=-c+a i-b j+d k=C(-c+d i+a j-b k)=C(j(x))
$$

So $C i=j C$ in the beads; similarly, $C j=k C, C k=i C$ as wanted.
So we let this be the cyan operation. Then, starting with the general quaternion $x=a+b i+c j+d k$, the initial state of the bead string, iijjCCC, gives $C(C(C(j(j(i(i(x)))))))=x$, since $C^{3}=1$. Since all the beads are invertible, starting the string at any other place in the circle will still produce the identity; all the allowed bead operations preserve the fact that the bead string composes to an identity (since removing 4 cyan beads will never be possible). Now we can check that the other strings do not compose to the identity.

- The first one is $i j i j C C C$ which is multiplication by -1 .
- The second is $C i C j C=j C k C C=j i C C C$, which is left multiplication by k.
- The third is $j j C C C$, again multiplication by -1 .
- The fourth is $i C C C$, left multiplication by i.

So all are impossible.
This problem and solution were proposed by Sammy Luo.

C2

A $2^{2014}+1$ by $2^{2014}+1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer n greater than 2 , there do not exist pairwise distinct black squares $s_{1}, s_{2}, \ldots, s_{n}$ such that s_{i} and s_{i+1} share an edge for $i=1,2, \ldots, n$ (here $s_{n+1}=s_{1}$).
What is the maximum possible number of filled black squares?
David Yang

Answer. If $n=2^{m}+1$ is the dimension of the grid, the answer is $\frac{2}{3} n(n+1)-1$. In this particular instance, $m=2014$ and $n=2^{2014}+1$.
Solution 1. Let $n=2^{m}+1$. Double-counting square edges yields $3 v+1 \leq 4 v-e \leq 2 n(n+1)$, so because $n \not \equiv 1(\bmod 3), v \leq 2 n(n+1) / 3-1$. Observe that if $3 \nmid n-1$, equality is achieved iff (a) the graph formed by black squares is a connected forest (i.e. a tree) and (b) all but two square edges belong to at least one black square.
We prove by induction on $m \geq 1$ that equality can in fact be achieved. For $m=1$, take an "H-shape" (so if we set the center at $(0,0)$ in the coordinate plane, everything but $(0, \pm 1)$ is black); call this G_{1}. To go from G_{m} to G_{m+1}, fill in $(2 x, 2 y)$ in G_{m+1} iff (x, y) is filled in G_{m}, and fill in (x, y) with x, y not both even iff $x+y$ is odd (so iff one of x, y is odd and the other is even). Each "newly-created" white square has both coordinates odd, and thus borders 4 (newly-created) black squares. In particular, there are no new white squares on the border (we only have the original two from G_{1}). Furthermore, no two white squares share an edge in G_{m+1}, since no square with odd coordinate sum is white. Thus G_{m+1} satisfies (b). To check that (a) holds, first we show that $\left(2 x_{1}, 2 y_{1}\right)$ and $\left(2 x_{2}, 2 y_{2}\right)$ are connected in G_{m+1} iff $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are black squares (and thus connected) in G_{m} (the new black squares are essentially just "bridges"). Indeed, every path in G_{m+1} alternates between coordinates with odd and even sum, or equivalently, new and old black squares. But two black squares $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent in G_{m} iff $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ is black and adjacent to $\left(2 x_{1}, 2 y_{1}\right)$ and $\left(2 x_{2}, 2 y_{2}\right)$ in G_{m+1}, whence the claim readily follows. The rest is clear: the set of old black squares must remain connected in G_{m+1}, and all new black squares (including those on the boundary) border at least one (old) black square (or else G_{m} would not satisfy (b)), so G_{m+1} is fully connected. On the other hand, G_{m+1} cannot have any cycles, or else we would get a cycle in G_{m} by removing the new black squares from a cycle in G_{m+1} (as every other square in a cycle would have to have odd coordinate sum).
This problem and solution were proposed by David Yang.
Solution 2. As above, we can show that there are at most $\frac{2}{3} n(n+1)-1$ black squares. We provide a different construction now for $n=2^{k}+1$.

Consider the grid as a coordinate plane (x, y) where $0 \leq x, y \leq 2^{m}$. Color white the any square (x, y) for which there exists a positive integer k with $x \equiv y \equiv 2^{k-1}(\bmod 2)^{k}$. Then, color white the square $(0,0)$.

Color the remaining squares black. Some calculations show that this is a valid construction which achieves $\frac{2}{3} n(n+1)-1$.
This second solution was suggested by Kevin Sun.
Solution 3. We can achieve the bound of $\frac{2}{3} n(n+1)-1$ as above. We will now give a construction which works for all $n=6 k+5$. Let $M=3 k+2$.

Consider the board as points (x, y) where $-M \leq x, y \leq M$. Paint white the following types of squares:

- The origin $(0,0)$ and the corner (M, M).
- Squares of the form $(\pm a, 0)$ and $(0, \pm a)$, where $a \not \equiv 1(\bmod 3)$ and $0<a<M$.
- Any square $(\pm x, \pm y)$ such that $y-x \equiv 0(\bmod 3)$ and $0<x, y<M$.

Paint black the remaining squares. This yields the desired construction.
This third solution was suggested by Ashwin Sah.

C3

We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with center X mapping every point in S other than X to another point in S (possibly the same point).
(a) Fix an integer n. Prove that if $n \geq 2$, then any line segment $\overline{A B}$ contains a unique very set S of size n such that $A, B \in S$.
(b) Find the largest possible size of a very set not contained in any line.
(Here, an inversion with center O and radius r sends every point P other than O to the point P^{\prime} along ray $O P$ such that $O P \cdot O P^{\prime}=r^{2}$.)
Sammy Luo

Answer. For part (b), the maximal size is 5 .
Solution. For part (a), take a regular $(n+1)$-gon and number the vertices $A_{i}(i=0,1,2, \ldots, n)$ Now invert the polygon with center A_{0} with arbitrary power. This gives a very set of size n. (This can be easy checked with angle chase, PoP , etc.) By scaling and translation, this shows the existence of a very set as in part (a).
It remains to prove uniqueness. Suppose points $A=P_{1}, P_{2}, \ldots, P_{n}=B$ and $A=X_{1}, X_{2}, \ldots, X_{n}=B$ are two very sets on $\overline{A B}$ in that order. Assume without loss of generality that $X_{1} X_{2}>P_{1} P_{2}$. Then $X_{2} X_{1}^{2}=X_{2} X_{3} \cdot\left(X_{1} X_{n}-X_{1} X_{2}\right) \Longrightarrow X_{2} X_{3}>P_{2} P_{3}$. Proceeding inductively, we find $X_{k} X_{k+1}>P_{k} P_{k+1}$ for $k=1,2, \ldots, n-1$. Thus, $X_{1} X_{n}>P_{1} P_{n}$, which is a contradiction.

For (b), let $P(A)$ (let's call this power, A is a point in space) be a function returning the radius of inversion with center A. Note that the power of endpoints of 1D very sets are equal, and these powers are the highest out of all points in the very set. Let the convex hull of our very set be H. Let the vertices be $A_{1}, A_{2}, \ldots, A_{m}$. (We have $m \geq 3$ since the points are not collinear.) Since A_{1}, A_{2} are endpoints of a 1D very set, they have equal power. Going around the hull, all vertices have equal power.

Lemma 1. Other than the vertices, no other points lie on the edges of H, and H is equilateral.
Proof. Say X is on $A_{1} A_{2}$. Then X, A_{3} are on opposite ends of a 1D very set, so they have equal power. Then $P(X)=P\left(A_{1}\right)=P\left(A_{2}\right)$ contradicting the fact the endpoints have the unique highest power. Therefore, since all sides only have 2 points on them, and all vertices have equal power, all sides are equal.

Lemma 2. H is a regular polygon.
Proof. Let's look at the segment $A_{1} A_{3}$. Say that on it we have a very set of size $k-1$. By uniqueness and the construction in (a), and the fact that $P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)$, we get that A_{1}, A_{2}, A_{3} are 3 vertices of a regular k-gon. Now the very set on segment $A_{1} A_{3}$ under inversion at A_{2} would map to a regular k-gon. So all vertices of this regular k-gon would be in our set. Assuming that not all angles are equal taking the largest angle who is adjacent to a smaller angle, we contradict convexity. So all angles are equal. Combining this with Lemma $1, H$ is a regular polygon.

Lemma 3. H cannot have more than 4 vertices.

Proof. Firstly, note that no points can be strictly any of the triangles $A_{i} A_{i+1} A_{i+2}$. (*) Or else, inverting with center A_{i+1} we get a point outside H. First, let's do if m (number of vertices) is odd. Let $m=2 k+1$. $(k \geq 2)$ Look at the inversive image of $A_{2 k+1}$ under inversion with center A_{2}. Say it maps to X. Note that $P(X)<P\left(A_{i}\right)$ for any i. Now look at the line $A_{k+2} X$. Since A_{k+2} is an endpoint, but $P(X)<P\left(A_{k+2}\right)$, the other endpoint of this 1D very set must be on ray $A_{k+2} X$ past X, contradicting $\left(^{*}\right)$, since no other vertices of H are on this ray. Similarly for m even and ≥ 6 we can also find 2 points like these who contain no other vertices in H on the line through them.

Lemma 4. We only have 2 distinct very sets in 2D (up to scaling), an equilateral triangle (when $n=3$) and a square with its center (when $n=5$).

Proof. First if H has 3 points, then by $\left(^{*}\right)$ in Lemma 3, no other points can lie inside H. So we get an equilateral triangle. If H has 4 points, then by $\left(^{*}\right)$ in Lemma 3, the only other point that we can add into our set is the center of the square. This also must be added, and this gives a very set of size 5 .

Hence, the maximal size is 5 .
This problem was proposed by Sammy Luo. This solution was given by Yang Liu.

C4

Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every b years,
(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $r b$ years in which the column is initially empty. Determine, in terms of r and b, the number of blocks in the column at the end.
(b) Now suppose r and b are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t=r, 2 r, \ldots,(b-1) r$ years, while a blue block falls at times $t=b, 2 b, \ldots,(r-1) b$ years. Prove that at time $t=r b$, the number of blocks in the column is $|1+2(r-1)(b+r)-8 S|$, where

$$
S=\left\lfloor\frac{2 r}{r+b}\right\rfloor+\left\lfloor\frac{4 r}{r+b}\right\rfloor+\ldots+\left\lfloor\frac{(r+b-1) r}{r+b}\right\rfloor .
$$

Sammy Luo

Remark. The second part of this problem was suggested by Allen Liu.
Answer. The answer is $2 \operatorname{gcd}(r, b)$.
Solution 1. Consider strings of letters x, y, cancelling $x x$, Here $y y$. x, y correspond to red, blue blocks, respectively. I'll denote a way for the blocks to fall by (r, b, C), so r is the years between cycle of red blocks, b is cycle between blue blocks, and C is the cycle offset, more specifically how many years after the first red block falls does the first blue block fall. $C<0$ is possible, that just means that the first blue block falls earlier than the first red block. To do this, we induct on $r+b$. Assume, $\operatorname{gcd}(r, b)=1$.

Now, let $r>b$ and $r=b k+q, 0 \leq q<b$. We have 2 similar cases to consider:
Case 1: q is odd. First we'll do if $C>0$, and then by the problem statement, $C<b$. We'll actually show that this falling situation is the same as $(q, b, C)=(b, q,-C)$, and then we'll finish this case by induction. In this case, it's easy to see that the falling will result in a sequence like

$$
x(y \ldots y) x(y \ldots y) \ldots x(y \ldots y)
$$

Note that the $(y \ldots y)$ each have length either k or $k+1$, with exactly q of those strings having length $k+1$ and the other $b-q$ having length k. Note that k is even. Now for each of the $(y \ldots y)$ strings, reduce them to a single letter depending on parity. Now we are left with q y's and still b x's. We show the resultant string is equal to (q, b, C).

This is actually pretty clear using simple remainder arguments. Say that the first x block fell at time 0. Just note that the length of (some y) was $k+1$ iff the first y in the string of (some y) fell at time t and $0<t$ $(\bmod r)<q($ then $t+k b<k b+q=r$, so another x would still have not appeared, but will appear next). So seeing all this, my claim becomes equivalent to the following assertion: Let l be the smallest positive integer such that $0<(C+l \cdot b)(\bmod r)<q$. Let $t=(C+l \cdot b)(\bmod r)$ Let $j=\frac{(C+l \cdot b)-t}{r}$. Then j is also the smallest positive integer such that $(j+1) \cdot q>C$. The proof of this is pretty silly. Then $j r+t=C+l \cdot b$. Taking $(\bmod b)$ gives $C \equiv j q+t$, and since $0<C<b, C \leq j q+t<q(j+1)$. The converse follows from the fact that for anytime the 2 sides match $(\bmod b)$, we can solve for l. Why is it equivalent? Well, the first time $k+1$ y's appear consecutively in the initial sequence is when $0<t(\bmod r)<q$, and the first time (since $k+1$ is odd) a y would appear in the reduced sequence is when $q(j+1)>C$. And these match! For the rest, just rotate the sequence and keep going. Now induction gives that it reduces to the string $x y$ or $y x$.

Ok, now $C<0$. So then our sequence would be yyxyyyyxyyyxyy or something like that. What we do is the following: We rotate it by putting stuff on the back end, and then use the case $C>0$, and associativity of cancellation:

$$
\begin{aligned}
\text { yyxyyyxyyyxy } & =(y y x)(x y y) y y x y y y y x y y y x y \\
& =(y y x)(x y y y y x y y y x y y y)(x y y) \\
& =(y y x)(x y)(x y y) \\
& =y x .
\end{aligned}
$$

(Computations show that it always ends up this way). So $C<0$ is finished.
Case 2: q is even. Similar remainder arguments as above show that if $C>0$, As above, it's equivalent to saying the minimal j with $(b-q)(j+1)>b-C$ is also the minimal j with $C+l \cdot b=j \cdot r+t$ and $q<t<b$. Taking $(\bmod b)$, we get $b-C \equiv j(b-q)-t$. But $0<-t(\bmod b)<b-q$. So $b-C \leq j(b-q)+(b-q)=(j+1)(b-q)$, as desired.
This first solution was suggested by Yang Liu.
Solution 2. As in Yang's solution have (r, b, C) represent the state. WLOG $r>b$ so we can set $0<C<b$. Only $\lfloor C\rfloor$ actually matters so there are b possibilities. Before deletion, the sequence consists of b blue blocks in a cycle with some number of red blocks between each adjacent pair. We can see that taking any possible sequence and shifting the numbers of red blocks between each pair right one pair gives an equivalent sequence, but since $(r, b)=1$ all of these are distinct, so they're the only possibilities.

So now every (r, b, C) is equivalent to (r, b, ϵ) where $0<\epsilon<1$, except shifted. Basically this yields $x y S$, where S is what would have resulted from all the nonsimultaneous blocks if we allowed $C=0$. But by symmetry S is symmetric about its center $\frac{r b}{2}$, so everything cancels out in pairs from the center outwards, until we're left with $x y$.
Basically this leaves the issue of what the offset, in changing the point at which the cyclic sequence's wrapover is broken, does. Let the unshifted string be $x y S A$, where A is the part that is cut off and shifted to the left. Since $S A$ must be a palindrome by the symmetry argument above, S is of the form $\left(A^{-1}\right)\left(S^{\prime}\right)$, where A^{-1} is A in reverse and S^{\prime} is a palindrome. Then the shifted string cancels to $A x y A^{-1}$. We claim this cancels with only two elements remaining. Indeed we can keep reducing the size of the A; since A 's last element is the same as A^{-1} 's first, one of them has to cancel with one of x, y, leaving $A^{\prime} y x A^{\prime-1}$, where $\left|A^{\prime}\right|=|A|-1$, and this continues until only $x y$ or $y x$ remains.
This second solution was suggested by Allen Liu.
This problem was proposed by Sammy Luo.

C6

Let f_{0} be the function from \mathbb{Z}^{2} to $\{0,1\}$ such that $f_{0}(0,0)=1$ and $f_{0}(x, y)=0$ otherwise. For each positive integer m, let $f_{m}(x, y)$ be the remainder when

$$
f_{m-1}(x, y)+\sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j, y+k)
$$

is divided by 2. Finally, for each nonnegative integer n, let a_{n} denote the number of pairs (x, y) such that $f_{n}(x, y)=1$. Find a closed form for a_{n}.
Bobby Shen

Solution. Note that a_{i} is simply the number of odd coefficients of $A_{i}(x, y)=A(x, y)^{i}$, where $A(x, y)=$ $\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)-x y$. Throughout this proof, we work in \mathbb{F}_{2} and repeatedly make use of the Frobenius endomorphism in the form $A_{2^{k} m}(x, y)=A_{m}(x, y)^{2^{k}}=A_{m}\left(x^{2^{k}}, y^{2^{k}}\right)\left(^{*}\right)$. We advise the reader to try the following simpler problem before proceeding: "Find (a recursion for) the number of odd coefficients of $\left(x^{2}+x+1\right)^{2^{n}-1}$."

First suppose n is not of the form $2^{m}-1$, and has $i \geq 0$ ones before its first zero from the right. By direct exponent analysis (after using $\left(^{*}\right)$), we obtain $a_{n}=a_{\frac{n-\left(2^{i}-1\right)}{2}} a_{2^{i}-1}$. Applying this fact repeatedly, we find that $a_{n}=a_{2^{\ell_{1}-1}} \cdots a_{2^{\ell_{r}-1}}$, where $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$ are the lengths of the r consecutive strings of ones in the binary representation of n. (When $n=2^{m}-1$, this is trivially true. When $n=0$, we take $r=0$ and a_{0} to be the empty product 1 , by convention.)
We now restrict our attention to the case $n=2^{m}-1$. The key is to look at the exponents of x and y modulo 2 - in particular, $A_{2 n}(x, y)=A_{n}\left(x^{2}, y^{2}\right)$ has only " $(0,0)(\bmod 2)$ " terms for $i \geq 1$. This will allow us to find a recursion.

For convenience, let $U[B(x, y)]$ be the number of odd coefficients of $B(x, y)$, so $U\left[A_{2^{n}-1}(x, y)\right]=a_{2^{n}-1}$. Observe that

$$
\begin{aligned}
A(x, y) & =\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)-x y=\left(x^{2}+1\right)\left(y^{2}+1\right)+\left(x^{2}+1\right) y+x\left(y^{2}+1\right) \\
(x+1) A(x, y) & =\left(y^{2}+1\right)+\left(x^{2}+1\right) y+x^{3}\left(y^{2}+1\right)+\left(x^{3}+x\right) y \\
(x+1)(y+1) A(x, y) & =\left(x^{2} y^{2}+1\right)+\left(x^{2} y+y^{3}\right)+\left(x^{3}+x y^{2}\right)+\left(x^{3} y^{3}+x y\right) \\
(x+y) A(x, y) & =\left(x^{2}+y^{2}\right)+\left(x^{2}+1\right)\left(y^{3}+y\right)+\left(x^{3}+x\right)\left(y^{2}+1\right)+\left(x^{3} y+x y^{3}\right) .
\end{aligned}
$$

Hence for $n \geq 1$, we have (using $\left(^{*}\right)$ again)

$$
\begin{aligned}
U\left[A_{2^{n}-1}(x, y)\right] & =U\left[A(x, y) A_{2^{n-1}-1}\left(x^{2}, y^{2}\right)\right] \\
& =U\left[(x+1)(y+1) A_{2^{n-1}-1}(x, y)\right]+U\left[(y+1) A_{2^{n-1}-1}(x, y)\right]+U\left[(x+1) A_{2^{n-1}-1}(x, y)\right] \\
& =U\left[(x+1)(y+1) A_{2^{n-1}-1}(x, y)\right]+2 U\left[(x+1) A_{2^{n-1}-1}(x, y)\right] .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
U\left[(x+1) A_{2^{n}-1}\right] & =2 U\left[(y+1) A_{2^{n-1}-1}\right]+2 U\left[(x+1) A_{2^{n-1}-1}\right]=4 U\left[(x+1) A_{2^{n-1}-1}\right] \\
U\left[(x+1)(y+1) A_{2^{n}-1}\right] & =2 U\left[(x y+1) A_{2^{n-1}-1}\right]+2 U\left[(x+y) A_{2^{n-1}-1}\right]=4 U\left[(x+y) A_{2^{n-1}-1}\right] \\
U\left[(x+y) A_{2^{n}-1}\right] & =2 U\left[(x+1)(y+1) A_{2^{n-1}-1}\right]+2 U\left[(x+y) A_{2^{n-1}-1}\right] .
\end{aligned}
$$

Here we use the symmetry between x and y, and the identity $(x y+1)=y\left(x+y^{-1}\right)$.) It immediately follows that

$$
\begin{aligned}
U\left[(x+1)(y+1) A_{2^{n+1}-1}\right] & =4 U\left[(x+y) A_{2^{n}-1}\right] \\
& =8 U\left[(x+1)(y+1) A_{2^{n-1}-1}\right]+8 \frac{U\left[(x+1)(y+1) A_{2^{n}-1}\right]}{4}
\end{aligned}
$$

for all $n \geq 1$, and because $x-4 \mid(x+2)(x-4)=x^{2}-2 x-8$,

$$
U\left[A_{2^{n+2}-1}(x, y)\right]=2 U\left[A_{2^{n+1}-1}(x, y)\right]+8 U\left[A_{2^{n}-1}(x, y)\right]
$$

as well. But $U\left[A_{2^{0}-1}\right]=1, U\left[A_{2^{1}-1}\right]=8$, and

$$
U\left[A_{2^{2}-1}\right]=4 U[x+y]+8 U[x+1]=24,
$$

so the recurrence also holds for $n=0$. Solving, we obtain $a_{2^{n}-1}=\frac{5 \cdot 4^{n}-2(-2)^{n}}{3}$, so we're done.
This problem and solution were proposed by Bobby Shen.
Remark. The number of odd coefficients of $\left(x^{2}+x+1\right)^{n}$ is the Jacobsthal sequence (OEIS A001045) (up to translation). The sequence $\left\{a_{n}\right\}$ in the problem also has a (rather empty) OEIS entry. It may be interesting to investigate the generalization

$$
\sum_{j=-1}^{1} \sum_{k=-1}^{1} c_{j, k} f_{i-1}(x+j, y+k)
$$

for 9-tuples $\left(c_{j, k}\right) \in\{0,1\}^{9}$. Note that when all $c_{j, k}$ are equal to 1 , we get $\left(x^{2}+x+1\right)^{n}\left(y^{2}+y+1\right)^{n}$, and thus the square of the Jacobsthal sequence.
Even more generally, one may ask the following: "Let f be an integer-coefficient polynomial in $n \geq 1$ variables, and p be a prime. For $i \geq 0$, let a_{i} denote the number of nonzero coefficients of $f^{p^{i}-1}$ (in \mathbb{F}_{p}).
Under what conditions must there always exist an infinite arithmetic progression $A P$ of positive integers for which $\left\{a_{i}: i \in A P\right\}$ satisfies a linear recurrence?"

G1

Let $A B C$ be a triangle with symmedian point K. Select a point A_{1} on line $B C$ such that the lines $A B, A C$, $A_{1} K$ and $B C$ are the sides of a cyclic quadrilateral. Define B_{1} and C_{1} similarly. Prove that A_{1}, B_{1}, and C_{1} are collinear.
Sammy Luo

Solution 1. Let $K A_{1}$ intersect $A C, A B$ at A_{b}, A_{c} respectively, and analogously define the points $B_{c}, B_{a}, C_{a}, C_{b}$. We claim that $A_{b} A_{c} B_{c} B_{a} C_{a} C_{b}$ is cyclic with center K. It's well known that $K A_{b}=K A_{c}$, etc. due to the antiparallelisms. Now note $\angle B_{c} A_{c} K=\angle A A_{c} A_{b}=\angle B C A=\angle B_{a} B_{c} B=\angle K B_{c} A_{c}$ so we also have $K A_{c}=K B_{c}$, etc. So all six segments from K are equal. Now Pascal on $A_{b} A_{c} B_{c} B_{a} C_{a} C_{b}$ gives A_{1}, B_{1}, C_{1} collinear as wanted.

This problem and solution were proposed by Sammy Luo.
Solution 2. Let $D E F$ be the triangle formed by the tangents to the circumcircle of $A B C$ at A, B, and C. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be $E F \cap B C, D F \cap A C$, and $D E \cap A B$, respectively. Since $E F$ is a tangent, it is antiparallel to $B C$ through A, so $A_{1} K \| E F$. Then $A_{1} B=A_{1} K \cdot \frac{A^{\prime} B}{A^{\prime} E}$, and $A_{1} C=A_{1} K \cdot \frac{A^{\prime} C}{A^{\prime} F}$ by similar triangles, so

$$
\begin{aligned}
\frac{A_{1} B}{A_{1} C} \frac{B_{1} C}{B_{1} A} \frac{C_{1} A}{C_{1} B} & =\frac{A^{\prime} B \cdot A^{\prime} F}{A^{\prime} C \cdot A^{\prime} E} \cdot \frac{B^{\prime} C \cdot B^{\prime} D}{B^{\prime} A \cdot B^{\prime} F} \cdot \frac{C^{\prime} A \cdot C^{\prime} E}{C^{\prime} B \cdot C^{\prime} D} \\
& =\frac{B A^{\prime}}{A^{\prime} C} \frac{C B^{\prime}}{B^{\prime} A} \frac{A C^{\prime}}{C^{\prime} B} \cdot \frac{F A^{\prime}}{A^{\prime} E} \frac{E C^{\prime}}{C^{\prime} D} \frac{D B^{\prime}}{B^{\prime} F} \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

by Menelaus. (DEF is collinear, since it is the symmedian line) Thus by the converse of Menelaus, A_{1}, B_{1}, and C_{1} are collinear.
This second solution was suggested by Kevin Sun.

G2

$A B C D$ is a cyclic quadrilateral inscribed in the circle ω. Let $A B \cap C D=E, A D \cap B C=F$. Let ω_{1}, ω_{2} be the circumcircles of $A E F, C E F$, respectively. Let $\omega \cap \omega_{1}=G, \omega \cap \omega_{2}=H$. Show that $A C, B D, G H$ are concurrent.
Yang Liu

Solution. Let $A C \cap B D=Q, A C \cap G H=Q^{\prime}$ (assuming $Q \neq Q^{\prime}$), and let the radical center of ω, ω_{1}, and ω_{2} be P, so P is the intersection of $E F, A G$, and $H C$. By Brokard's on $A B C D, F Q E$ is self-polar, so P (on $E F$) is on the polar of Q. Similarly, by Brokard's on $A G C H, Q^{\prime}$ is on the polar of P. Thus $Q Q^{\prime}$ is the polar of P, so $A C$ is the polar of P, which is clearly absurd.

This problem and solution were proposed by Yang Liu.

G3

Let $A_{1} A_{2} A_{3} \cdots A_{2013}$ be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon, there exists a point $Q \neq P$ such that $\frac{A_{i} P}{A_{i} Q}$ is constant for $i \in\{1,2,3, \cdots, 2013\}$.
Robin Park

Solution. Let ω be the circumcircle of $A_{1} A_{2} A_{3} \cdots A_{2013}$. We just need Q such that ω is the Apollonius circle of P, Q for some ratio r. Let the center of ω be O, and let $P O$ intersect ω at X, Y. Pick point Q on line $X Y$ such that $\frac{X P}{X Q}=\frac{Y P}{Y Q}$, i.e. $X P Y Q$ is harmonic. Now, ω is a circle with center on $P Q$ that has two points X, Y with the same ratio of distances to P, Q, so ω is an Apollonius circle of P, Q; the ratio of distances from any point on ω to P, Q is constant, implying the problem.

This problem was proposed by Robin Park. This solution was given by Sammy Luo.

G4

Let $A B C D$ be a quadrilateral inscribed in circle ω. Define $E=A A \cap C D, F=A A \cap B C, G=B E \cap \omega$, $H=B E \cap A D, I=D F \cap \omega$, and $J=D F \cap A B$. Prove that $G I, H J$, and the B-symmedian are concurrent. Robin Park

Solution. The main point of this problem is to show that $A I C G$ is harmonic. Indeed, because of similar triangles and the Law of Sines, $A I=\frac{A D \cdot F I}{A F}$ and $C I=2 R \sin (\angle F B I)=2 R \cdot \frac{F I}{F B} \cdot \sin (\angle B I D)=\frac{F I \cdot B D}{B F}$. So

$$
\frac{A I}{C I}=\frac{A D}{B D} \cdot \frac{B F}{A B}=\frac{A D \cdot A B}{B D \cdot A C}=\frac{A G}{C G}
$$

since it's symmetric in B, D.
Therefore, $A I C G$ is harmonic. Let $A A \cap C C=K$. Note that I, G, K are collinear. By Pascal's Theorem on $A A B G I D$, we get that K, H, J are collinear. By the Symmedian Lemma, the B-symmedian passes through K, so $H J, I G$, and the B-symmedian all pass through K
This problem was proposed by Robin Park. This solution was given by Yang Liu.

G5

Let P be a point in the interior of an acute triangle $A B C$, and let Q be its isogonal conjugate. Denote by ω_{P} and ω_{Q} the circumcircles of triangles $B P C$ and $B Q C$, respectively. Suppose the circle with diameter $\overline{A P}$ intersects ω_{P} again at M, and line $A M$ intersects ω_{P} again at X. Similarly, suppose the circle with diameter $\overline{A Q}$ intersects ω_{Q} again at N, and line $A N$ intersects ω_{Q} again at Y.
Prove that lines $M N$ and $X Y$ are parallel. (Here, the points P and Q are isogonal conjugates with respect to $\triangle A B C$ if the internal angle bisectors of $\angle B A C, \angle C B A$, and $\angle A C B$ also bisect the angles $\angle P A Q, \angle P B Q$, and $\angle P C Q$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Sammy Luo

Solution. We are given that P and Q are isogonal conjugates.
Since $\angle P M X=\angle Q N Y=\frac{\pi}{2}$, we derive

$$
\angle P B X=\angle Q B Y=\angle P C X=\angle Q C Y=\frac{\pi}{2}
$$

Thus

$$
\angle A B Y=\frac{\pi}{2}+\angle A B Q=\angle P B C+\frac{\pi}{2}=\pi-\angle C B X
$$

so X and Y are isogonal with respect to $\angle B$. However, similar angle chasing gives that they are isogonal with respect to $\angle C$. Thus they are isogonal conjugates with respect to $A B C$. (In particular, $\angle B A Y=\angle X A C$.)
Also, $\angle A B Y=\pi-\angle C B X=\pi-\angle C M X=\angle A M C$; hence $\triangle A B Y \sim \triangle A M C$. Similarly, $\triangle A B N \sim$ $\triangle A X C$. Thus $\frac{A N}{A B}=\frac{A C}{A X}$, and $\frac{A B}{A Y}=\frac{A M}{A C}$. Multiplying, we get that $\frac{A N}{A Y}=\frac{A M}{A X}$ which implies the conclusion.

This problem was proposed by Sammy Luo. This solution was given by Kevin Sun.
Remark. The points M and N are also isogonal conjugates.

G6

Let $A B C D$ be a cyclic quadrilateral with center O. Suppose the circumcircles of triangles $A O B$ and $C O D$ meet again at G, while the circumcircles of triangles $A O D$ and $B O C$ meet again at H. Let ω_{1} denote the circle passing through G as well as the feet of the perpendiculars from G to $A B$ and $C D$. Define ω_{2} analogously as the circle passing through H and the feet of the perpendiculars from H to $B C$ and $D A$. Show that the midpoint of $G H$ lies on the radical axis of ω_{1} and ω_{2}.
Yang Liu

Solution 1. Let $F=A B \cap C D, E=A D \cap B C$. Let P be the intersection of the diagonals of the quadrilateral $(A C \cap B D)$ Then simple angle chasing gives that $A P G D$ is cyclic. (Just show that $\angle A P D=\angle A G D=$ $\angle A G O+\angle D G O$, both which are easy to find).
Similarly, $B P G C$ is cyclic. Now we show that $\angle P G O=\angle P G A+\angle O G A=\angle P D A+\angle O B A=\pi / 2$.
Now by Radical Axis on $B P G C, A P G D, A B C D$, we get that E, P, G are collinear. By Radical Axis on $A B G O, C D G O, A B C D$, we get that F, O, G are collinear. Therefore, $\angle E G F=\pi-\angle P G O=\pi / 2$. Similarly, $\angle E H F=\pi / 2$. So $E F G H$ is cyclic. Similarly, O, H, E are collinear.

Now, the finish is easy. Let M be the midpoint of $G H$. And let line $M G H$ hit ω_{1} at G^{\prime}, and ω_{2} at H^{\prime}. Note that $\angle E H^{\prime} H=\pi / 2=\angle E G F$, and $\angle E H H^{\prime}=\angle E F G$. So $\triangle E H^{\prime} H \sim \triangle E G F \Longrightarrow H H^{\prime}=\frac{E H \cdot G F}{E F}=G G^{\prime}$ by symmetry. So $M H \cdot M H^{\prime}=M H \cdot\left(M H+H H^{\prime}\right)=M G \cdot\left(M G+G G^{\prime}\right)=M G \cdot M G^{\prime}$, so M has the same power wrt both circles, so it's on the radical axis.
This problem and solution were proposed by Yang Liu.
Solution 2. Let $P=A B \cap C D, Q=A D \cap B C, R=A C \cap B D$. It's easy to show by angle chasing that the Miquel point M of a cyclic $A B C D$ with center O lies on $(A O C)$. So G, H are the Miquel points of $A C B D, A B D C$ respectively. It's also well-known (by Brokard and a spiral similarity, see here) that G, H are then the feet of the altitudes from O to $Q R, R P$ respectively (and O is the orthocenter of $P Q R$).
Note that ω_{1}, ω_{2} are the circles with diameters $G P, H Q$ respectively (due to the right angles). Now, $P Q G H$ is cyclic due to the right angles, so the radical center of $(P Q G H), \omega_{1}, \omega_{2}$ is $G P \cap H Q=O$. Let F be the midpoint of $P Q, M$ the midpoint of $G H$, and O_{1}, O_{2} the centers of ω_{1}, ω_{2} respectively (so, the midpoints of $P G, Q H$ respectively). Now it suffices to show that $O M \perp O_{1} O_{2}$. But notice that O_{1}, O_{2} are the feet of perpendiculars from F to $P G, Q H$ respectively, and so the line through O that is perpendicular to $O_{1} O_{2}$ is isogonal to $O F$ w.r.t. angle $P O Q$. But since $G H P Q$ is cyclic, $G H, P Q$ are antiparallel wrt this angle, so since $O M$ bisects segment $G H, O M$ is the O-symmedian in $\triangle P O Q$, and so is isogonal to $O F$, and thus perpendicular to $O_{1} O_{2}$ as wanted. So M is on the radical axis as wanted.
This second solution was suggested by Sammy Luo.

G7

Let $A B C$ be a triangle inscribed in circle ω with center O; let ω_{A} be its A-mixtilinear incircle, ω_{B} be its B-mixtilinear incircle, ω_{C} be its C-mixtilinear incircle, and X be the radical center of $\omega_{A}, \omega_{B}, \omega_{C}$. Let A^{\prime}, B^{\prime}, C^{\prime} be the points at which $\omega_{A}, \omega_{B}, \omega_{C}$ are tangent to ω. Prove that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ and $O X$ are concurrent. Robin Park

Solution. Let the incenter be I, and the tangency points of the incircle to the 3 sides be T_{A}, T_{B}, T_{C}. Also, let ω_{A} be tangent to the sides $A B, A C$ at A_{B}, A_{C}, respectively (and similar for the other circles and sides). Let the midpoints of the arcs be M_{A}, M_{B}, M_{C}, and the midpoints of T_{A}, I be N_{A}, etc.
It's pretty well-known that I is the midpoint of A_{B}, A_{C}, and similar. Now we show that the radical axis of ω_{B}, ω_{C} contains N_{A} and M_{A}. First we show that N_{A} is on the radical axis. Let (X, ω) denote the power of a point X w.r.t. some circle ω. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function such that $f(P)=\left(P, \omega_{B}\right)-\left(P, \omega_{C}\right)$. Then $f(I)=-I B_{C}^{2}+I C_{B}^{2}$ and $f\left(T_{A}\right)=T_{A} B_{C}^{2}-T_{A} C_{B}^{2}$, so it follows by Pythagorean Theorem that

$$
f(I)+f\left(T_{A}\right)=\left(I C_{B}^{2}-T_{A} C_{B}^{2}\right)-\left(I B_{C}^{2}-T_{A} B_{C}^{2}\right)=I T_{A}^{2}-I T_{A}^{2}=0
$$

Since f is linear in P, we have that $f\left(N_{A}\right)=\frac{f(I)+f\left(T_{A}\right)}{2}=0$. Hence N_{A} lies on the radical axis of ω_{B} and ω_{C}.
Now we show that M_{A} lies on the radical axis. Let l_{B} be the length of the tangent from M_{A} to the circle ω_{B}. By Casey's Theorem on the circles B, M_{A}, C, ω_{B}, we get that

$$
B M_{A} \cdot C B_{C}+C M_{A} \cdot B B_{C}=l_{B} \cdot B C \Longrightarrow l_{B}=B M_{A}=C M_{A}
$$

. Similarly, $l_{C}=B M_{A}=C M_{A}$ (tangent from M_{A} to ω_{C}), so M_{A} lies on their radical axis. Now by simple angle chasing, $M_{A} M_{B} \| N_{A} N_{B}$, so the triangles $M_{A} M_{B} M_{C}$ and $N_{A} N_{B} N_{C}$ are homothetic, so $M_{A} N_{A}, M_{B} N_{B}, M_{C} N_{C}$ are concurrent on $I O$ (the lines through their centers).

This problem was proposed by Robin Park. This solution was given by Yang Liu and Robin Park.

G8

In triangle $A B C$ with incenter I and circumcenter O, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of tangency of its circumcircle with its A, B, C-mixtilinear circles, respectively. Let ω_{A} be the circle through A^{\prime} that is tangent to $A I$ at I, and define ω_{B}, ω_{C} similarly. Prove that $\omega_{A}, \omega_{B}, \omega_{C}$ have a common point X other than I, and that $\angle A X O=\angle O X A^{\prime}$.
Sammy Luo

Solution. For the sake of simplicity, let D, E, and F be the points of tangency of the circumcircle to the mixtilinear incircles.
Invert with respect to the incircle; $\triangle A B C$ is mapped to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Since the circumcircles of $\triangle A^{\prime} B^{\prime} I$, $\triangle B^{\prime} C^{\prime} I$, and $\triangle C^{\prime} A^{\prime} I$ concur at I, by a well-known lemma I is the orthocenter of $A^{\prime} B^{\prime} C^{\prime}$. Let D^{\prime}, etc. be the images of D, etc., under this inversion. We claim that D^{\prime} is the reflection of I over the midpoint of $B^{\prime} C^{\prime}$. This is clear because $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} are concyclic and $I D$ is a symmedian of $\triangle I B C$, implying that $I D^{\prime}$ is a median of $\triangle I B^{\prime} C^{\prime}$. Therefore D^{\prime} is also the antipode of A^{\prime} with respect to the circumcircle of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Similarly, E^{\prime} and F^{\prime} are the antipodes of B^{\prime} and C^{\prime}, respectively.
ω_{A} is mapped to a line parallel to $A^{\prime} I$ passing through D^{\prime}, and ω_{B}, ω_{C} are mapped similarly. Clearly ω_{A}^{\prime}, ω_{B}^{\prime}, and ω_{C}^{\prime} concur at the orthocenter of $\triangle D^{\prime} E^{\prime} F^{\prime}$, since $B^{\prime} C^{\prime}\left\|E^{\prime} F^{\prime}, C^{\prime} A^{\prime}\right\| F^{\prime} D^{\prime}$, and $A^{\prime} B^{\prime} \| D^{\prime} E^{\prime}$. Let this point be X^{\prime}. Note that $\angle X^{\prime} A^{\prime} I=\angle X^{\prime} D^{\prime} I$.

We claim that I, X^{\prime}, and O are collinear. If P is the circumcenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$, then note that P is the midpoint of $I X^{\prime}$ because there exists a homothety centered at O with ratio -1 sending $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle D^{\prime} E^{\prime} F^{\prime}$ (X^{\prime} is the de Longchamps point of $\triangle A^{\prime} B^{\prime} C^{\prime}$). Hence O, I, and P are collinear and so it follows that I, X^{\prime}, and O are collinear.

Inverting back to our original diagram, we see that $\angle X^{\prime} A^{\prime} I=\angle X^{\prime} D^{\prime} I$ implies that $\angle A X O=\angle A X I=$ $\angle I X D=\angle O X D$, as desired.
This problem was proposed by Sammy Luo. This solution was given by Robin Park.

G9

Let P be a point inside a triangle $A B C$ such that $\angle P A C=\angle P C B$. Let the projections of P onto $B C, C A$, and $A B$ be X, Y, Z respectively. Let O be the circumcenter of $\triangle X Y Z, H$ be the foot of the altitude from B to $A C, N$ be the midpoint of $A C$, and T be the point such that $T Y P O$ is a parallelogram. Show that $\triangle T H N$ is similar to $\triangle P B C$.
Sammy Luo

Solution 1. Let Q be the isogonal conjugate of P with respect to $A B C$. It's well-known that O is the midpoint of $P Q$. Also, the given angle condition gives $\angle B A Q=\angle P A C=\angle P C B=\angle B C P$, so $\triangle B P C \sim \triangle B Q A$. Now let B^{\prime}, P^{\prime} be the reflections of B, P over $A C$, respectively, and let T^{\prime} be the midpoint of $Q P^{\prime}$. We have $\triangle B^{\prime} P^{\prime} C \sim \triangle B P C \sim \triangle B Q A$; furthermore, $B^{\prime} P^{\prime} C$ and $B Q A$ are oriented the same way, so their average (the triangle formed by the midpoints of the segments formed by corresponding points in the triangles), $H T^{\prime} N$, is directly similar to both of them (for a proof, do some spiral similarity stuff). So it suffices to show $T^{\prime}=T$. But $O Y T^{\prime}$ is the medial triangle of $P^{\prime} Q P$, so $O T^{\prime} \| P Y$ and $Y T^{\prime} \| O P$, and so $T^{\prime}=T$ and we're done.

This problem and solution were proposed by Sammy Luo.
Solution 2. Let Q be the reflection of P over O. It's quite well-known and easy to show that Q is the isogonal conjugate of P. Since $\angle P A C=\angle P C B, \angle B A Q=\angle P A C=\angle P C B=\angle B C P$. Thus $\triangle B P C \sim \triangle B Q A$
Let $S=A P \cap C Q$. Since $\angle C A P=\angle A B Q, \triangle C A S$ is isosceles, so $S N \perp A C$. Let P^{\prime} and Y^{\prime} are the reflection of P and Y over $N S$. Since $Y P \perp A C \perp N S, Y P P^{\prime} Y^{\prime}$ is a rectangle. Let T^{\prime} is the reflection of Y over T. Then P, P^{\prime}, Q, and O are the translations of $Y, Y^{\prime}, T^{\prime}$, and T under vector $Y P$. Thus $Y^{\prime} T^{\prime} \| P^{\prime} Q$, so $N T \| P^{\prime} Q$ (since $Y^{\prime} T^{\prime}$ is the dilation by 2 from C of $N T$).
Thus $N T \| C Q$, so $\angle H N T=\angle H C Q=\angle P C B$.
Let B^{\prime} be the reflection of B over $P C$, and let D be the foot of the perpendicular from B to $P C$. Then $\triangle B^{\prime} P C \cong \triangle B P C \sim \triangle B Q A$. If we average these triangles, we get that $\triangle B Q A \sim \triangle D O N$, since D, O, and N, are the midpoints of $A C, P Q$, and $B B^{\prime}$ respectively.

Since $N T \| C Q, \angle H N T=\angle H C Q=\angle P C B=\angle D N O$, so $\angle T N O=\angle H N D$.
Now, we know that $\angle C H B=\angle C D B=\frac{\pi}{2}$, so $C H D B$ is cyclic, so $\angle N H D=\angle C H D=\pi-\angle C B D=$ $\pi-\left(\frac{\pi}{2}-\angle D C B\right)=\frac{\pi}{2}+\angle P C B=\frac{\pi}{2}+\angle A C Q=\frac{\pi}{2}+\angle A N T=\angle N T O$. Thus $\triangle N H D \sim \triangle N T O$, so $\triangle T H N \sim \triangle O D N \sim \triangle Q B A \sim \triangle P B C$.
This second solution was suggested by Kevin Sun.

G10

We are given triangles $A B C$ and $D E F$ such that $D \in B C, E \in C A, F \in A B, A D \perp E F, B E \perp F D, C F \perp$ $D E$. Let the circumcenter of $D E F$ be O, and let the circumcircle of $D E F$ intersect $B C, C A, A B$ again at R, S, T respectively. Prove that the perpendiculars to $B C, C A, A B$ through D, E, F respectively intersect at a point X, and the lines $A R, B S, C T$ intersect at a point Y, such that O, X, Y are collinear.

Sammy Luo

Solution 1. Start with a triangle $D E F$, circumcircle ω and orthocenter H. Let $D H \cap E F=D_{1}, E H \cap D F=$ $E_{1}, F H \cap D E=F_{1}$. We already showed that from this a unique triangle $A B C$. We first show that $H R \perp B C$ and similar stuff. To do this, phantom $R^{\prime}, S^{\prime}, T^{\prime}$ on $\odot D E F$ so that $H R^{\prime} \perp R^{\prime} F$ and similar for S^{\prime}, T^{\prime}. Let $A^{\prime}=D R^{\prime} \cap E S^{\prime}$, and similar for B^{\prime}, C^{\prime}. By Radical Axis Theorem on $\odot F T^{\prime} H F_{1}, \odot H S^{\prime} E D_{1}, \omega$ we get that A^{\prime}, D_{1}, H are collinear, so $A^{\prime} D \perp E F$. Since $A B C$ is unique, $R^{\prime}=R, S^{\prime}=S, T^{\prime}=T$. So $H R \perp B C$.
Now we show that $F S \cap E T=K, O, H$ are collinear. For this part we use complex numbers. Let ω be the unit circle. Then $h=d+e+f$. First we find $s . s$ satisfies

$$
\frac{s-e}{\overline{s-e}}=-\frac{s-h}{\overline{s-h}}
$$

Using $\bar{x}=\frac{1}{x}$ for x on the unit circle, we simplify this to $\frac{s-(d+e+f)}{\frac{1}{s}-\left(\frac{d e+d f+e f}{d e f}\right)}=s e$, and now we solve for s to find $s=\frac{d f(d+f+2 e)}{d e+e f+2 d f}$. Now let $K^{\prime}=O H \cap F S$. Since K^{\prime} is on $O H$, we can write it's complex number as $k^{\prime}=p(d+e+f)$ for a real number p. Now we compute $f-s=f-\frac{d f(d+f+2 e)}{d e+e f+2 d f}=f\left(1-\frac{d(d+f+2 e)}{d e+e f+2 d f}\right)=$ $f\left(\frac{(f-d)(d+e)}{d e+e f+2 d f}\right)$. Now its pretty easy to compute that $\frac{f-s}{f-s}=-\frac{d f^{2}(d+f+2 e)}{d e+e f+2 d f}$. So $\frac{k^{\prime}-f}{\overline{k^{\prime}-f}}=\frac{f-s}{f-s}=-\frac{d f^{2}(d+f+2 e)}{d e+e f+2 d f}$. Rearranging, we get

$$
\begin{gathered}
k^{\prime}+\overline{k^{\prime}} \cdot \frac{d f^{2}(d+f+2 e)}{d e+e f+2 d f}=f+\frac{d f(d+f+2 e)}{d e+e f+2 d f} \Longrightarrow \\
p\left((d+e+f)+\frac{f(d+f+2 e)(d e+e f+d f)}{e(d e+e f+2 d f)}\right)=f\left(\frac{d^{2}+e f+3 d e+3 d f}{d e+e f+2 d f}\right)
\end{gathered}
$$

Now, if we be smart with some manipulation (just use distributive property a lot), we can simplify the above to (after multiplying both sides by $d e+e f+2 d f$),

$$
p\left(\frac{d e f(d+e+f)+(e+f)(d+e+f)(d e+e f+d f)+e f(d e+e f+d f)}{e f}\right)=\left(d^{2}+e f+3 d e+3 d f\right)
$$

. Now it's easy to see that p will be symmetric in e, f so $E T$ also passes through K^{\prime}.
Finally, to finish, use Pappus's Theorem on $B T F, C S E$. Let $B S \cap C T=Y, C F \cap B E=H, F S \cap E T=K$ are collinear. But note that O, H, K are collinear, and that X is the reflection of H over O (since $H R \perp B C$ and similar stuff). So O, X, Y are collinear, as desired.
This problem and solution were proposed by Sammy Luo.
Solution 2. This is the same as above, except we will provide a synthetic proof that K, O, and H are collinear. Invert about H. H maps to the incenter of $D^{\prime} E^{\prime} F^{\prime}$. S^{\prime} is the intersection of the exterior angle bisector of E^{\prime} with $\left(D^{\prime} E^{\prime} F^{\prime}\right)$, and T^{\prime} is defined similarly for F^{\prime}. Thus S^{\prime}, T^{\prime} are midpoints of arcs $D E F$ and $D F E$. We want to prove that $H, K^{\prime}=\left(H F^{\prime} S^{\prime}\right) \cap\left(H E^{\prime} T^{\prime}\right)$, and the center of $D^{\prime} E^{\prime} F^{\prime}$ are collinear. Let U be the center of this circle and $W=F^{\prime} S^{\prime} \cap E^{\prime} T^{\prime}$. Since $F^{\prime} S^{\prime} E^{\prime} T^{\prime}$ is cyclic, W lies on $H K^{\prime}$, so it suffices to show U, W, H are collinear. Let E_{0}, F_{0} be the other arc midpoints of $D^{\prime} E^{\prime}, D^{\prime} F^{\prime}$. Then Pascal on $D E D_{0} E_{0} S^{\prime} T^{\prime}$ gives U, W, H collinear, so we are done.

This second solution was suggested by Michael Kural.

G11

Let $A B C$ be a triangle with circumcenter O. Let P be a point inside $A B C$, so let the points D, E, F be on $B C, A C, A B$ respectively so that the Miquel point of $D E F$ with respect to $A B C$ is P. Let the reflections of D, E, F over the midpoints of the sides that they lie on be R, S, T. Let the Miquel point of $R S T$ with respect to the triangle $A B C$ be Q. Show that $O P=O Q$.
Yang Liu

Solution 1. Let the midpoints of the sides be M_{A}, M_{B}, M_{C}, respectively.
Lemma 1. Let D, E, F be points on $B C, A C, A B$ respectively. Then there exists a point P such that such that $\angle P F B=\angle P D C=\angle P E A=\alpha$ if and only if

$$
B F^{2}+C D^{2}+A E^{2}=B D^{2}+C E^{2}+A F^{2}+4 K \cot \alpha
$$

where K is the area of $\triangle A B C$.
Proof. We apply the Law of Cosines to the triangles $P F B, P F A, P E A, P E C, P D C, P B D$ to get the three equations

$$
\begin{aligned}
P F^{2}+B F^{2}-2 \cdot P F \cdot B F \cos \alpha & =P D^{2}+B D^{2}+2 \cdot P D \cdot B D \cos \alpha \\
P E^{2}+A E^{2}-2 \cdot P E \cdot A E \cos \alpha & =P F^{2}+A F^{2}+2 \cdot P F \cdot A D \cos \alpha \\
P D^{2}+C D^{2}-2 \cdot P D \cdot C D \cos \alpha & =P E^{2}+C E^{2}+2 \cdot P E \cdot C E \cos \alpha
\end{aligned}
$$

Summing this and rearranging terms gives

$$
\begin{aligned}
B F^{2}+A E^{2}+C D^{2}= & B D^{2}+C E^{2}+A F^{2} \\
& +2 \cos \alpha(P F \cdot B F+P D \cdot B D+P E \cdot A E+P F \cdot A D+P D \cdot C D+P E \cdot C E) \\
= & B D^{2}+C E^{2}+A F^{2}+2 \cos \alpha \cdot \frac{2 K}{\sin \alpha} \\
= & B D^{2}+C E^{2}+A F^{2}+4 K \cot \alpha
\end{aligned}
$$

For the "if" part, just use that if we fix P, D, E, the there is only one point F on $A B$ such that $\angle P F B=$ $\angle P D C=\angle P E A=\alpha$. Also, the equation above only has one solution on the side $A B$ as we move F around. So those 2 points must be the same.

Lemma 2. The reflections of $P D, P E, P F$ over $M_{A} O, M_{B} O, M_{C} O$ concur at Q.
Proof. Since $\angle P F B=\angle P D C=\angle P E A$ (all cyclic quadrilaterals), we can just apply Lemma 1, and do some easy calculations to see that the reflections concur. So let the common intersection point be Q^{\prime}. Then because opposite angles sum to $\pi, Q^{\prime} S C R, Q^{\prime} T A S, Q^{\prime} T B R$ all are cyclic, so $Q^{\prime}=Q$.

To finish, let $Q S \cap P E=Y, Q T \cap P F=Z$. By easy angle chasing, $P Q Y Z$ is cyclic (the points are in some order). Note that $Y M_{B} \cap Z M_{C}=O$. But also, since $Y M_{B}, Z M_{C}$ bisect the angles $\angle E Y S, \angle F Z T$ respectively, the meet at one of the arc midpoints of $P Q$ on the circumcircle of $P Q Y Z$. So O is the arc midpoint of $P Q$ on the circle $P Q Y Z$, so $O P=O Q$ as claimed.
This problem and solution were proposed by Yang Liu.
Solution 2. Let M_{A}, M_{B}, M_{C} be the midpoints of $B C, A C, A B$.
I guess we should use directed angles. Let $X=P D \cap Q R, Y=P E \cap Q S, Z=P F \cap Q T$. Let $\alpha=\angle P D B=$ $\angle P F A=\angle P E C$, and $\beta=\angle C R Q=\angle A S Q=\angle B T Q . \angle P X Q=-\angle B D P-\angle Q R C=\alpha+\beta$. Similarly, $\angle P Y Q=\angle P Z Q=\alpha+\beta$. Thus P, Q, X, Y, and Z are concyclic.

Let $G=(A E F) \cap(A S T), H=(B F D) \cap(B T R), I=(C D E) \cap(C R S) . \quad \angle P G Q=\angle A G Q-\angle A G P=$ $\angle A T Q-\angle A F P=\alpha+\beta$. Similarly, $\angle P H Q=\angle P I Q=\alpha+\beta$, so G, H, and I are on the circle, so P, Q, G, H, I, X, Y, Z are concyclic.
Now, I claim that $A G, B H$, and $C I$ concur. Consider $\frac{\sin B A G}{\sin G A C}=\frac{\sin F A G}{\sin G A E}=\frac{\sin F E G}{\sin G F E}=\frac{F G}{G E}$. Since $\triangle F G T \sim$ $\triangle E G S$ (due to cyclic quads), $\frac{F G}{G E}=\frac{F T}{E S}$. Thus $\frac{\sin B A G}{\sin G A C} \frac{\sin A C I}{\sin I C B} \frac{\sin C B H}{\sin H B A}=\frac{F T}{E S} \frac{E S}{D R} \frac{D R}{F T}=1$, so by Ceva's theorem, $A G, B H$, and $C I$ concur.
Also, since $\triangle F G E \sim \triangle T G S$, spiral similarity gives that $\triangle F G E \sim \triangle T G S \sim M_{C} G M_{B}$. Then $A M_{C} G O M_{B}$ is cyclic.

Now, let $J=A G \cap B H \cap C I$. Since $\angle A M_{C} O=\frac{\pi}{2}, \angle A G O=\frac{\pi}{2}$, so $\angle J G O=\frac{\pi}{2}$. Similarly, $\angle J H O=\angle J I O=$ $\frac{\pi}{2}$, so J, O, G, H, and I are cyclic with diameter $J O$. However, from earlier we have that the circumcircle of $G H I$ contains points P, Q, X, Y, Z. Thus $G H I J O P Q X Y Z$ is a cyclic decagon with diameter $O J$.
Then $\angle P D B=\angle P F A=\angle P G A=\angle P G J=\angle P X J$, so $B C \| J X$. Since $O J$ is a diameter, $O X \perp X J$, and since M_{A} is a midpoint, $O M_{A} \perp B C$. However, $B C \| J X$, so M_{A} is on $O X$. However, $D M_{A}=R M_{A}$, so $\triangle D M_{A} X \cong \triangle R M_{A} X$, so $\angle D X M_{A}=\angle M_{A} X R$, so $\angle P X O=\angle O X Q$, so $\angle O P Q=-\angle O Q P$, which means that $O P=O Q$.
This second solution was suggested by Kevin Sun.
Solution 3. Let $A Q$ meet $A P E F$ at $L, B Q$ meet $B P D F$ at $K, C Q$ meet $C P D E$ at G. Let the midpoint of K, Q be M, and the midpoints of the sides by M_{A}, M_{B}, M_{C}. Note that $K D F \sim Q R T$ since

$$
\angle K D F=\angle K B F=\angle Q B T=\angle Q R T
$$

and similarly $\angle K F D=\angle Q T R$, so averaging these two triangles yields another similar triangle $M M_{A} M_{C}$. Then $\angle M_{C} M M_{A}=\angle D K F=\pi-\angle D B F$, so $B M_{C} M M_{A}$ is cyclic. But clearly this quadrilateral has diameter $B O$, so $O M \perp B M$. Thus $O Q=O K(=O L=O G)$ by similar arguments. We claim $P K Q G$ is cyclic. Indeed,

$$
\angle K P G+\angle K Q G=2 \pi-\angle K P D-\angle G P D+\angle K Q G=\angle B Q C+\angle Q C B+\angle C B Q=\pi
$$

So this quadrilateral is cyclic. Then P lies on cyclic $Q K L G$ with center O, so we are done.
This third solution was suggested by Michael Kural.
Solution 4. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the antipodes of A, B, C, respectively, in $(A E F),(B F D),(C D E)$ respectively; let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the antipodes of A, B, C, respectively, in $(A S T),(B T R),(C R S)$, respectively. Now, B^{\prime}, C^{\prime} are both on the perpendicular to $B C$ through D, and so forth. So note that $B^{\prime}, B^{\prime \prime}$ are reflections about O, since the feet from $B^{\prime}, B^{\prime \prime}$ to $B C, B A$ are both symmetric about the corresponding midpoints.
Also, note (using directed angles): $\angle P B^{\prime} B=\angle P F B=\angle P F A=\angle P E A=\angle P A^{\prime} A=\angle P E C=\angle P D C=$ $\angle P C^{\prime} C$ and $\angle B P B^{\prime}=\angle A P A^{\prime}=\angle C P C^{\prime}=90^{\circ}$ so $B B^{\prime} P, C C^{\prime} P, A A^{\prime} P$ are all directly similar; thus P is the center of a spiral similarity (with angle 90°) from $A^{\prime} B^{\prime} C^{\prime}$ to $A B C$, which we will call S_{P}. Similarly, Q is the center of a spiral similarity (with angle 90°) from $A B C$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, which we call S_{Q}.

Now consider the composition $S_{Q} S_{P}\left(S_{P}\right.$ is applied first). This maps $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. But these two triangles are reflections of each other about O, so O is at the same position relative to both (in fact, it's their center of rotation!); thus $S_{Q} S_{P}$ maps O to itself. In particular, since $A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are congruent, S_{P}, S_{Q} must have scale factors that are multiplicative inverses; say the scale factor of S_{P} is r.
So let O^{\prime} be the image of O under S_{P}. So $O P O^{\prime}=90^{\circ}$ and $O^{\prime} Q O=90^{\circ} ; \frac{O^{\prime} P}{O P}=r=\frac{O^{\prime} Q}{O Q}$. This is enough to show $O P O^{\prime}, O Q O^{\prime}$ congruent, so $O P=O Q$ as desired.
This fourth solution was suggested by Sammy Luo.
Remark. This is quite similar in flavor to IMO Shortlist 2012, Problem G6, and a comment given by user proglote in that thread can be used to solve this problem.
Remark. In fact, a further generalization of this problem of this problem is possible. Let P a point, and $X Y Z$ be its pedal triangle. A_{1}, B_{1}, and C_{1} are points on $B C, A C$, and $A B$, and A_{2}, B_{2}, and C_{2} are their reflections over X, Y, and Z, If the Miquel point of A_{1}, B_{1}, C_{1} is P_{1} and the Miquel point of A_{2}, B_{2}, C_{2} is P_{2}, then $P P_{1}=P P_{2}$.

G12

Let $A B=A C$ in $\triangle A B C$, and let D be a point on segment $A B$. The tangent at D to the circumcircle ω of $B C D$ hits $A C$ at E. The other tangent from E to ω touches it at F, and $G=B F \cap C D, H=A G \cap B C$. Prove that $B H=2 H C$.
David Stoner

Solution 1. Let J be the second intersection of ω and $A C$, and X be the intersection of $B F$ and $A C$. It's well-known that $D J F C$ is harmonic; perspectivity wrt B implies $A J X C$ is also harmonic. Then $\frac{A J}{J X}=$ $\frac{A C}{C X} \Longrightarrow(A J)(C X)=(A C)(J X)$. This can be rearranged to get

$$
(A J)(C X)=(A J+J X+X C)(J X) \Longrightarrow 2(A J)(C X)=(J X+A J)(J X+X C)=(A X)(C J)
$$

so

$$
\left(\frac{A X}{X C}\right)\left(\frac{C J}{J A}\right)=2
$$

But $\frac{C J}{J A}=\frac{A D}{D B}$, so by Ceva's we have $B H=2 H C$, as desired.
Solution 2. Let J be the second intersection of ω and $A C$. It's well-known that $D J F C$ is harmonic; thus we have $(D J)(F C)=(J F)(D C)$. By Ptolemy's, this means

$$
(D F)(J C)=(D J)(F C)+(J F)(D C)=2(J D)(C F) \Longrightarrow\left(\frac{J C}{J D}\right)\left(\frac{F D}{F C}\right)=2
$$

Yet $J C=D B$ by symmetry, so this becomes

$$
2=\left(\frac{D B}{J D}\right)\left(\frac{F D}{F C}\right)=\left(\frac{\sin D J B}{\sin J B D}\right)\left(\frac{\sin F C D}{\sin F D C}\right)=\left(\frac{\sin D C B}{\sin A C D}\right)\left(\frac{\sin F B A}{\sin C B F}\right)
$$

Thus by (trig) Ceva's we have $\frac{\sin B A H}{\sin C A H}=2$, and since $A B=A C$ it follows that $B H=2 H C$, as desired.
This problem and its solutions were proposed by David Stoner.

G13

Let $A B C$ be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch $A B, A C, B C$ at X, Y, Z respectively. Let $X Y$ hit $\operatorname{arcs} A B, A C$ of ω at M, N respectively, and let $P \neq X, Q \neq Y$ be the points on γ such that $M P=M X, N Q=N Y$. If I is the center of γ, prove that P, I, Q are collinear if and only if $\angle B A C=90^{\circ}$.
David Stoner

Solution. Let α be the half-angles of $\triangle A B C, r$ inradius, and u, v, w tangent lengths to the incircle. Let $T=M P \cap N Q$ so that I is the incenter of $\triangle M N T$. Then $\angle I P T=\angle I X Y=\alpha=\angle I Y X=\angle I Q T$ gives $\triangle T I P \sim \triangle T I Q$, so P, I, Q are collinear iff $\angle T I P=90^{\circ}$ iff $\angle M T N=180^{\circ}-2 \alpha$ iff $\angle M I N=180^{\circ}-\alpha$ iff $M I^{2}=M X \cdot M N$. First suppose I is the center of γ. Since A, I are symmetric about $X Y, \angle M A N=\angle M I N$. But P, I, Q are collinear iff $\angle M I N=180^{\circ}-\alpha$, so because $\operatorname{arcs} A N$ and $B M$ sum to $90^{\circ}, P, I, Q$ are collinear iff $\operatorname{arcs} B M, M A$ have the same measure. Let $M^{\prime}=C I \cap \omega$; then $\angle B M^{\prime} I=\angle B M^{\prime} C=90^{\circ}-\angle B X I$, so $M^{\prime} X I B Z$ is cyclic and $\angle M^{\prime} X B=\angle M^{\prime} I B=180^{\circ}-\angle B I C=45^{\circ}=\angle A X Y$, as desired. (There are many other ways to finish as well.) Conversely, if P, I, Q are collinear, then by power of a point, $m(m+2 t)=M I^{2}-r^{2}=M X \cdot M N-r^{2}=m(m+2 t+n)-r^{2}$, so $m n=r^{2}$. But we also have $m(n+2 t)=u v$ and $n(m+2 t)=u w$, so

$$
r^{2}=m n=\frac{u v-r^{2}}{2 t} \frac{u w-r^{2}}{2 t}=\frac{\frac{u v(u+v)}{u+v+w}}{2 r \cos \alpha} \frac{\frac{u w(u+w)}{u+v+w}}{2 r \cos \alpha}=\frac{r^{2}}{4 \cos ^{2} \alpha} \frac{(u+v)(u+w)}{v w} .
$$

Simplifying using $\cos ^{2} \alpha=\frac{u^{2}}{u^{2}+r^{2}}=\frac{u(u+v+w)}{(u+v)(u+w)}$, we get

$$
0=(u+v)^{2}(u+w)^{2}-4 u v w(u+v+w)=(u(u+v+w)-v w)^{2}
$$

which clearly implies $(u+v)^{2}+(u+w)^{2}=(v+w)^{2}$, as desired.
This problem was proposed by David Stoner. This solution was given by Victor Wang.

N1

Does there exist a strictly increasing infinite sequence of perfect squares $a_{1}, a_{2}, a_{3}, \ldots$ such that for all $k \in \mathbb{Z}^{+}$ we have that $13^{k} \mid a_{k}+1$?

Jesse Zhang

Solution. We have that 5 is a solution to $x^{2}+1=0 \bmod 13$. Now assume that we have a solution x_{k} to $f(x)=x^{2}+1=0 \bmod 13^{k}$. Note that $f^{\prime}(x)=2 x \neq 0 \bmod 13$ clearly, so by Hensel there is a solution x_{k+1} to $f(x)=x^{2}+1=0 \bmod 13^{k+1}$. Then just add 13^{k+1} to x_{k+1} to make it strictly larger than x_{k}, and we're done.
This problem was proposed by Jesse Zhang. This solution was given by Michael Kural.

N2

Define the Fibanocci sequence recursively by $F_{1}=1, F_{2}=1$ and $F_{i+2}=F_{i}+F_{i+1}$ for all i. Prove that for all integers $b, c>1$, there exists an integer n such that the sum of the digits of F_{n} when written in base b is greater than c.
Ryan Alweiss

Solution. It's well known that if N is a positive integer multiple of $b^{k}-1$, then the base b digital sum of N is at least $k(b-1)$. Now just apply the lemma with k sufficiently large and pick n with $b^{k}-1 \mid F_{n}$.
This problem and solution were proposed by Ryan Alweiss.

N3

Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a polynomial P, of degree n and with rational coefficients, such that the following property holds: exactly one of

$$
\frac{P(k)}{t^{k}} \text { and } \frac{P(k)}{t^{k+1}}
$$

is an integer for each $k=0,1, \ldots, m$.
Michael Kural

Answer. The maximal value of m is n.
Solution 1. Note that if $t^{k+1} \| P(k+1)$ and $t^{k} \| P(k)$, then $t^{k} \| P(k+1)-P(k)$. A simple induction on $\operatorname{deg} P$ then establishes an upper bound of n. To achieve this, simply put $P(k)=t^{k}$ for each $0 \leq k \leq n$.
This problem and solution were proposed by Michael Kural.
Solution 2. By Lagrange Interpolation, we can find a polynomial satisfying $P(k)=t^{k}$ for $0 \leq k \leq n$ with rational coefficients. By Newtonian Interpolation, $P(n+1)=\sum_{i=0}^{n}\binom{n}{i} P(i)(-1)^{n-i}$. Taking (mod $\left.t\right)$, $P(n+1)=(-1)^{n} \cdot P(0) \neq 0(\bmod t)$.
This second solution was suggested by Yang Liu.

N4

Let \mathbb{N} denote the set of positive integers, and for a function f, let $f^{k}(n)$ denote the function f applied k times. Call a function $f: \mathbb{N} \rightarrow \mathbb{N}$ saturated if

$$
f^{f^{f(n)}(n)}(n)=n
$$

for every positive integer n. Find all positive integers m for which the following holds: every saturated function f satisfies $f^{2014}(m)=m$.

Evan Chen

Answer. All m dividing 2014; that is, $\{1,2,19,38,53,106,1007,2014\}$.
Solution. First, it is easy to see that f is both surjective and injective, so f is a permutation of the positive integers. We claim that the functions f which satisfy the property are precisely those functions which satisfy $f^{n}(n)=n$ for every n.
For each integer n, let $\operatorname{ord}(n)$ denote the smallest integer k such that $f^{k}(n)$. These orders exist since $f^{f^{f(n)}(n)}(n)=n$, so $\operatorname{ord}(n) \leq f^{f(n)}(n)$; in fact we actually have

$$
\begin{equation*}
\operatorname{ord}(n) \mid f^{f(n)}(n) \tag{8.1}
\end{equation*}
$$

as a consequence of the division algorithm.
Since f is a permutation, it is immediate that $\operatorname{ord}(n)=\operatorname{ord}(f(n))$ for every n; this implies easily that $\operatorname{ord}(n)=\operatorname{ord}\left(f^{k}(n)\right)$ for every integer k. In particular, $\operatorname{ord}(n)=\operatorname{ord}\left(f^{f(n)-1}(n)\right)$. But then, applying 8.1) to $f^{f(n)-1}(n)$ gives

$$
\begin{aligned}
\operatorname{ord}(n)=\operatorname{ord}\left(f^{f(n)-1}(n)\right) \mid & f^{f\left(f^{f(n)-1}(n)\right)}\left(f^{f(n)-1}(n)\right) \\
& =f^{f^{f(n)}(n)+f(n)-1}(n) \\
& =f^{f(n)-1}\left(f^{f^{f(n)}(n)}(n)\right) \\
& =f^{f(n)-1}(n)
\end{aligned}
$$

Inductively, then, we are able to show that $\operatorname{ord}(n) \mid f^{f(n)-k}(n)$ for every integer k; in particular, ord $(n) \mid$ $f^{0}(n)=n$, which implies that $f^{n}(n)=n$. To see that this is actually sufficient, simply note that ord $(n)=$ $\operatorname{ord}(f(n))=\cdots$, which implies that $\operatorname{ord}(n) \mid f^{k}(n)$ for every k.
In particular, if $m \mid 2014$, then $\operatorname{ord}(m)|m| 2014$ and $f^{2014}(m)=m$. The construction for the other values of m (showing that they are not forced) is left as an easy exercise.
This problem and solution were proposed by Evan Chen.
Remark. There are many ways to express the same ideas. For instance, the following approach ("unraveling indices") also works: It's not hard to show that f is a bijection with finite cycles (when viewed as a permutation). If $C=\left(n_{0}, n_{1}, \ldots, n_{\ell-1}\right)$ is one such cycle with $f\left(n_{i}\right)=n_{i+1}$ for all i (extending indices mod ℓ), then $f^{f^{f(n)}(n)}(n)=n$ holds on C iff $\ell \mid f^{f\left(n_{i}\right)}\left(n_{i}\right)=n_{i+n_{i+1}}$ for all i. But $\ell\left|n_{j} \Longrightarrow \ell\right| n_{j-1+n_{j}}=n_{j-1}$ for fixed j, so the latter condition holds iff $\ell \mid n_{i}$ for all i. Thus $f^{2014}(n)=n$ is forced unless and only unless $n \nmid 2014$.

N5
Define a beautiful number to be an integer of the form a^{n}, where $a \in\{3,4,5,6\}$ and n is a positive integer. Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.
Matthew Babbitt

Solution. First, we prove a lemma.
Lemma 1. Let $a_{0}>a_{1}>a_{2}>\cdots>a_{n}$ be positive integers such that $a_{0}-a_{n}<a_{1}+a_{2}+\cdots+a_{n}$. Then for some $1 \leq i \leq n$, we have

$$
0 \leq a_{0}-\left(a_{1}+a_{2}+\cdots+a_{i}\right)<a_{i} .
$$

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show that $a_{0}-\left(a_{1}+\right.$ $\left.\cdots+a_{i}\right) \geq a_{i}$ for each i. This becomes a contradiction at $i=n$.

Let N be the integer we want to express in this form. We will prove the result by strong induction on N. The base cases will be $3 \leq N \leq 10=6+3+1$.
Let $x_{1}>x_{2}>x_{3}>x_{4}$ be the largest powers of $3,4,5,6$ less than $N-3$, in some order. If one of the inequalities of the form

$$
3 \leq N-\left(x_{1}+\cdots+x_{k}\right)<x_{k}+3 ; \quad 1 \leq k \leq 4
$$

is true, then we are done, since we can subtract of x_{1}, \ldots, x_{k} from N to get an N^{\prime} with $3 \leq N^{\prime}<N$ and then apply the inductive hypothesis; the construction for N^{\prime} cannot use any of $\left\{x_{1}, \ldots, x_{k}\right\}$ since $N^{\prime}-x_{k}<3$.
To see that this is indeed the case, first observe that $N-3>x_{1}$ by construction and compute

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{4} \geq(N-3) \cdot\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{6}\right)>N-3
$$

So the hypothesis of the lemma applies with $a_{0}=N-3$ and $a_{i}=x_{i}$ for $1 \leq i \leq 4$.
Thus, we are done by induction.
This problem and solution were proposed by Matthew Babbitt.
Remark. While the approach of subtracting off large numbers and inducting is extremely natural, it is not immediately obvious that one should consider $3 \leq N-\left(x_{1}+\cdots+x_{k}\right)<x_{k}+3$ rather than the stronger bound $3 \leq N-\left(x_{1}+\cdots+x_{k}\right)<x_{k}$. In particular, the solution method above does not work if one attempts to get the latter.

Show that the numerator of

$$
\frac{2^{p-1}}{p+1}-\left(\sum_{k=0}^{p-1} \frac{\binom{p-1}{k}}{(1-k p)^{2}}\right)
$$

is a multiple of p^{3} for any odd prime p.
Yang Liu

Solution. Remark $(1-k p)^{2}\left(1+2 p k+3 p^{2} k^{2}\right) \equiv 3 k^{4} p^{4}-4 k^{3} p^{3}+1 \equiv 1\left(\bmod p^{3}\right)$, so $\frac{1}{(1-k p)^{2}} \equiv\left(1+2 p k+3 p^{2} k^{2}\right)$ $\left(\bmod p^{3}\right)$. Thus

$$
\begin{aligned}
\left(\sum_{k=0}^{p-1} \frac{\binom{p-1}{k}}{(1-k p)^{2}}\right) & \equiv \sum_{k=0}^{p-1}\binom{p-1}{k}\left(1+2 p k+3 p^{2} k^{2}\right) \quad\left(\bmod p^{3}\right) \\
& =\sum_{k=0}^{p-1}\binom{p-1}{k}+\sum_{k=0}^{p-1} 2 p k\binom{p-1}{k}+\sum_{k=0}^{p-1} 3 p^{2} k^{2}\binom{p-1}{k} \\
& =2^{p-1}+\sum_{k=0}^{p-1} p k\binom{p-1}{k}+\sum_{k=0}^{p-1} p(p-1-k)\binom{p-1}{k}+\sum_{k=0}^{p-1} 3 p^{2} k^{2}\binom{p-1}{k} \\
& =2^{p-1}+\sum_{k=0}^{p-1} p(p-1)\binom{p-1}{k}+\sum_{k=0}^{p-1} 3 p^{2} k^{2}\binom{p-1}{k} \\
& =\left(p^{2}-p+1\right) 2^{p-1}+\sum_{k=0}^{p-1} 3 p^{2} k^{2}\binom{p-1}{k} \\
& \equiv\left(p^{2}-p+1\right) 2^{p-1}+\sum_{k=0}^{p-1} 3 p^{2} k^{2}(-1)^{k} \quad\left(\bmod p^{3}\right) \\
& \equiv\left(p^{2}-p+1\right) 2^{p-1}+3 p^{3} \frac{p^{p-1}}{2}\left(\bmod p^{3}\right) \\
& \equiv \frac{2^{p-1}}{p+1}\left(\bmod p^{3}\right)
\end{aligned}
$$

This problem and solution were proposed by Yang Liu.

N7

Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then $n+c$ divides $a^{n}+b^{n}+n$.
Evan Chen

Answer. $(a, b, c)=(1,1,2)$.
Solution. Let p be an arbitrary prime such that $p \geq 2011 \cdot \max \{a b c, 2013\}$. By the Chinese Remainder Theorem it is possible to select an integer n satisfying the following properties:

$$
\begin{array}{ll}
n \equiv-c & (\bmod p) \\
n \equiv-1 & (\bmod p-1) \\
n \equiv-1 & (\bmod q)
\end{array}
$$

for all primes $q \leq 2011$ not dividing $p-1$. This will guarantee that n is not divisible by any integer less than 2013. Upon selecting this n, we find that

$$
p|n+c| a^{n}+b^{n}+n
$$

which implies that

$$
a^{n}+b^{n} \equiv c \quad(\bmod p)
$$

But $n \equiv-1(\bmod p-1)$; hence $a^{n} \equiv a^{-1}(\bmod p)$ by Euler's Little Theorem. Hence we may write

$$
p \mid a b\left(a^{-1}+b^{-1}-c\right)=a+b-a b c .
$$

But since p is large, this is only possible if $a+b-a b c$ is zero. The only triples of positive integers with that property are $(a, b, c)=(2,2,1)$ and $(a, b, c)=(1,1,2)$. One can check that of these, only $(a, b, c)=(1,1,2)$ is a valid solution.
This problem and solution were proposed by Evan Chen.

N8

Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:
(i) The greatest common divisor of the sequence $f(1), f(2), \ldots$ is 1 .
(ii) For all sufficiently large integers n, we have $f(n) \neq 1$ and

$$
f(a)^{n} \mid f(a+b)^{a^{n-1}}-f(b)^{a^{n-1}}
$$

for all positive integers a and b.

Yang Liu

Answer. The only such function is the constant function $f(b)=b$.
Solution. Let (ii) hold for $n \geq C$. First we claim $f(a) \mid a$ for all a. Let p be any prime dividing $f(a)$. Choose b so that $p \nmid f(a+b), f(b)$ (possible via (i)). So

$$
p \mid f(a+b)^{a^{C-1}}-f(b)^{a^{C-1}}
$$

Now let

$$
v_{p}\left(f(a+b)^{a^{C-1}}-f(b)^{a^{C-1}}\right)=k
$$

By the divisibility for all $n>C$,

$$
n v_{p}(f(a)) \leq v_{p}\left(f(a+b)^{a^{n-1}}-f(b)^{a^{n-1}}\right)=k+(n-C) v_{p}(a)
$$

by Lifting the Exponent. Now it's clear that $v_{p}(f(a)) \leq v_{p}(a)$, so $f(a) \mid a$.
Note that for sufficiently large primes p since $f(p) \mid p$, and then $f(p) \neq 1, f(p)=p$. Now plug in $a=p$, and by Fermat's Little Theorem, $p \mid f(b+p)-f(b)$ for all b and sufficiently large p. In fact, this then gives that

$$
p \mid f(b+k p)-f(b)
$$

for any integer k. Now choose $p>b$. If $f(b+p) \neq b+p$, then

$$
f(b+p) \leq \frac{b+p}{2}<p
$$

But $p \mid f(b+p)-f(b)$ for all large enough p. Therefore $f(b+p)=f(b)$ for all sufficiently large primes p. By our condition, $f(b) \neq 1$ now, so take a prime $q \mid f(b)$. Then $q \mid b$ and therefore, $q \mid f(b+p)-f(p)=$ $f(b)-f(p) \Longrightarrow q \mid p$ for any sufficiently large p. So $q=1$, contradiction. So $f(b+p)=b+p$. Since $0<f(b+p)-f(b)=b+p-f(b)<b+p<2 p$ and $p \mid f(b+p)-f(b), f(b)=b$ for all b. You can check that this solution works with LTE.
This problem and solution were proposed by Yang Liu.

N11

Let p be a prime satisfying $p^{2} \mid 2^{p-1}-1$, and let n be a positive integer. Define

$$
f(x)=\frac{(x-1)^{p^{n}}-\left(x^{p^{n}}-1\right)}{p(x-1)}
$$

Find the largest positive integer N such that there exist polynomials $g(x), h(x)$ with integer coefficients and an integer r satisfying $f(x)=(x-r)^{N} g(x)+p \cdot h(x)$.

Victor Wang

Answer. The largest possible N is $2 p^{n-1}$.
Solution 1. Let $F(x)=\frac{x}{1}+\cdots+\frac{x^{p-1}}{p-1}$.
By standard methods we can show that $(x-1)^{p^{n}}-\left(x^{p^{n-1}}-1\right)^{p}$ has all coefficients divisible by p^{2}. But $p^{2} \mid 2^{p-1}-1$ means p is odd, so working in \mathbb{F}_{p}, we have

$$
\begin{aligned}
(x-1) f(x)=\sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k}(-1)^{k-1} x^{p^{n-1} k} & =\sum_{k=1}^{p-1}\binom{p-1}{k-1}(-1)^{k-1} \frac{x^{p^{n-1} k}}{k} \\
& =\sum_{k=1}^{p-1} \frac{x^{p^{n-1} k}}{k^{p^{n-1}}}=F(x)^{p^{n-1}}
\end{aligned}
$$

where we use Fermat's little theorem, $\binom{p-1}{k-1} \equiv(-1)^{k-1}(\bmod p)$ for $k=1,2, \ldots, p-1$, and the well-known fact that $P\left(x^{p}\right)-P(x)^{p}$ has all coefficients divisible by p for any polynomial P with integer coefficients.
However, it is easy to verify that $p^{2} \mid 2^{p-1}-1$ if and only if $p \mid F(-1)$, i.e. -1 is a root of F in \mathbb{F}_{p}. Furthermore, $F^{\prime}(x)=\frac{x^{p-1}-1}{x-1}=(x+1)(x+2) \cdots(x+p-2)$ in \mathbb{F}_{p}, so -1 is a root of F with multiplicity 2; hence $N \geq 2 p^{n-1}$. On the other hand, since F^{\prime} has no double roots, F has no integer roots with multiplicity greater than 2. In particular, $N \leq 2 p^{n-1}$ (note that the multiplicity of 1 is in fact $p^{n-1}-1$, since $F(1)=0$ by Wolstenholme's theorem but 1 is not a root of F^{\prime}).
This problem and solution were proposed by Victor Wang.
Remark. The r th derivative of a polynomial P evaluated at 1 is simply the coefficient $\left[(x-1)^{r}\right] P$ (i.e. the coefficient of $(x-1)^{r}$ when P is written as a polynomial in $\left.x-1\right)$ divided by r !.
Solution 2. This is asking to find the greatest multiplicity of an integer root of f modulo p; I claim the answer is $2 p^{n-1}$.

First, we shift x by 1 and take the negative (since this doesn't change the greatest multiplicity) for convenience, redefining f as $f(x)=\frac{(x+1)^{p^{n}}-x^{p^{n}}-1}{p x}$.
Now, we expand this. We can show, by writing out and cancelling, that p^{1} fully divides $\binom{p^{n}}{k}$ only when p^{n-1} divides k; thus, we can ignore all terms except the ones with degree divisible by p^{n-1} (since they still go away when taking it $\bmod p)$, leaving $f(x)=\frac{1}{p x}\left(\binom{p^{n}}{p^{n-1}} x^{p^{n}-p^{n-1}}+\cdots+\binom{p^{n}}{p^{n}-p^{n-1}} x^{p^{n-1}}\right)$.
We can also show, by writing out/cancelling, that $\frac{1}{p}\binom{p^{n}}{k p^{n-1}}=\frac{1}{p}\binom{p}{k}$ modulo p. Simplifying using this, the expression above becomes $\left.f(x)=\frac{1}{p x}\binom{p}{1} x^{p^{n}-p^{n-1}}+\cdots+\binom{p}{p-1} x^{p^{n-1}}\right)=\frac{1}{p x}\left(\left(x^{p^{n-1}}+1\right)^{p}-\left(x^{p^{n}}+1\right)\right)$.
Now, we ignore the $1 / x$ for the moment (all it does is reduce the multiplicity of the root at $x=0$ by 1) and just look at the rest, $P(x)=\frac{1}{p}\left(\left(x^{p^{n-1}}+1\right)^{p}-\left(x^{p^{n}}+1\right)\right)$.
Substituting $y=x^{p^{n-1}}$, this becomes $\frac{1}{p}\left((y+1)^{p}-\left(y^{p}+1\right)\right)$; since $\frac{1}{p}\binom{p}{k}=\frac{1}{k}\binom{p-1}{k-1}$, this is equal to $P(x)=$ $\frac{1}{1}\binom{p-1}{0} y^{p-1}+\cdots+\frac{1}{p-1}\binom{p-1}{p-2} y$. (We work mod p now; the p s can be cancelled before modding out.)

We now show that $P(x)$ has no integer roots of multiplicity greater than 2 , by considering the root multiplicities of y times its reversal, or $Q(x)=\frac{1}{p-1}\binom{p-1}{p-2} y^{p-1}+\cdots+\frac{1}{1}\binom{p-1}{0} y$.
Note that some polynomial P has a root of multiplicity m at x iff P and its first $m-1$ derivatives all have zeroes at x. (We're using the formal derivatives here - we can prove this algebraically over \mathbb{Z} mod p, if $m<p$.) The derivative of Q is $\binom{p-1}{p-2} y^{p-2}+\cdots+\binom{p-1}{0}$, or $(y+1)^{p-1}-y^{p-1}$, which has as a root every residue except 0 and -1 by Fermat's little theorem; the second derivative is a constant multiple of $(y+1)^{p-2}-y^{p-2}$, which has no integer roots by Fermat's little theorem and unique inverses. Therefore, no integer root of Q has multiplicity greater than 2; we know that the factorization of a polynomial's reverse is just the reverse of its factorization, and integers have inverses mod p, so $P(x)$ doesn't have integer roots of multiplicity greater than 2 either.
Factoring $P(x)$ completely in y (over some extension of \mathbb{F}_{p}), we know that two distinct factors can't share a root; thus, at most 2 factors have any given integer root, and since their degrees (in x) are each p^{n-1}, this means no integer root has multiplicity greater than $2 p^{n-1}$.
However, we see that $y=1$ is a double root of P. This is because plugging in gives $P(1)=\frac{1}{p}\left((1+1)^{p}-\right.$ $\left.\left(1^{p}+1\right)\right)=\frac{1}{p}\left(2^{p}-2\right)$; by the condition, p^{2} divides $2^{p}-2$, so this is zero $\bmod p$. Since 1 is its own inverse, it's a root of Q as well, and it's a root of Q 's derivative so it's a double root (so $(y-1)^{2}$ is part of Q 's factorization). Reversing, $(y-1)^{2}$ is part of P 's factorization as well.
Applying a well-known fact, $y-1=x^{p^{n-1}}-1=(x-1)^{p^{n-1}}$ modulo p, so 1 is a root of P with multiplicity $2 p^{n-1}$.
Since adding back in the factor of $1 / x$ doesn't change this multiplicity, our answer is therefore $2 p^{n-1}$.
This second solution was suggested by Alex Smith.

[^0]: Sammy Luo

