$15{ }^{\text {th }}$ Everyone Lives at Most Once
 Lincoln, Nebraska
 Day I 8:00 AM - 12:30 PM
 June 15, 2013

1. Let $a_{1}, a_{2}, \ldots, a_{9}$ be nine real numbers, not necessarily distinct, with average m. Let A denote the number of triples $1 \leq i<j<k \leq 9$ for which $a_{i}+a_{j}+a_{k} \geq 3 m$. What is the minimum possible value of A ?
2. Let a, b, c be positive reals satisfying $a+b+c=\sqrt[7]{a}+\sqrt[7]{b}+\sqrt[7]{c}$. Prove that $a^{a} b^{b} c^{c} \geq 1$.
3. Let $m_{1}, m_{2}, \ldots, m_{2013}>1$ be 2013 pairwise relatively prime positive integers and $A_{1}, A_{2}, \ldots, A_{2013}$ be 2013 (possibly empty) sets with $A_{i} \subseteq\left\{1,2, \ldots, m_{i}-1\right\}$ for $i=1,2, \ldots, 2013$. Prove that there is a positive integer N such that

$$
N \leq\left(2\left|A_{1}\right|+1\right)\left(2\left|A_{2}\right|+1\right) \cdots\left(2\left|A_{2013}\right|+1\right)
$$

and for each $i=1,2, \ldots, 2013$, there does not exist $a \in A_{i}$ such that m_{i} divides $N-a$.

$15^{\text {th }}$ Everyone Lives at Most Once

 Lincoln, Nebraska

 Lincoln, Nebraska
 Day II 8:00 AM - 12:30 PM
 June 16, 2013

4. Triangle $A B C$ is inscribed in circle ω. A circle with chord $B C$ intersects segments $A B$ and $A C$ again at S and R, respectively. Segments $B R$ and $C S$ meet at L, and rays $L R$ and $L S$ intersect ω at D and E, respectively. The internal angle bisector of $\angle B D E$ meets line $E R$ at K. Prove that if $B E=B R$, then $\angle E L K=\frac{1}{2} \angle B C D$.
5. For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in \mathbb{R}^{3} so that for every integer $n \geq 1$, the sum of the n^{3} integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$?
6. Consider a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for every integer $n \geq 0$, there are at most $0.001 n^{2}$ pairs of integers (x, y) for which $f(x+y) \neq f(x)+f(y)$ and $\max \{|x|,|y|\} \leq n$. Is it possible that for some integer $n \geq 0$, there are more than n integers a such that $f(a) \neq a \cdot f(1)$ and $|a| \leq n ?$
