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OFFICIAL SOLUTIONS

1. Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote
the number of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum
possible value of A?

Proposed by Ray Li.

Answer. A ≥ 28.

Solution 1. Call a 3-set good iff it has average at least m, and let S be the family of good
sets.

The equality case A = 28 can be achieved when a1 = · · · = a8 = 0 and a9 = 1. Here m = 1
9 ,

and the good sets are precisely those containing a9. This gives a total of
(
8
2

)
= 28.

To prove the lower bound, suppose we have exactly N good 3-sets, and let p = N

(9
3)

denote

the probability that a randomly chosen 3-set is good. Now, consider a random permutation π
of {1, 2, . . . , 9}. Then the corresponding partition

⋃2
i=0{π(3i+ 1), π(3i+ 2), π(3i+ 3)} has at

least 1 good 3-set, so by the linearity of expectation,

1 ≤ E

[
2∑
i=0

[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]

]

=

2∑
i=0

[E[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]]

=

2∑
i=0

1 · p = 3p.

Hence N = p
(
9
3

)
≥ 1

3

(
9
3

)
= 28, establishing the lower bound. �

This problem and solution were proposed by Ray Li.

Remark. One can use double-counting rather than expectation to prove N ≥ 28. In any case,
this method generalizes effortlessly to larger numbers.

Solution 2. Proceed as above to get an upper bound of 28.

On the other hand, we will show that we can partition the
(
9
3

)
= 84 3-sets into 28 groups of 3,

such that in any group, the elements a1, a2, · · · , a9 all appear. This will imply the conclusion,
since if A < 28, then there are at least 57 sets with average at most m, but by pigeonhole
three of them must be in such a group, which is clearly impossible.

Consider a 3-set and the following array:

a1 a2 a3
a4 a5 a6
a7 a8 a9

Consider a set |S| = 3. We obtain the other two 3-sets in the group as follows:
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• If S contains one element in each column, then shift the elements down cyclically mod 3.

• If S contains one element in each row, then shift the elements right cyclically mod 3.
Note that the result coincides with the previous case if both conditions are satisfied.

• Otherwise, the elements of S are “constrained” in a 2×2 box, possibly shifted diagonally.
In this case, we get an L-tromino. Then shift diagonally in the direction the L-tromino
points in.

One can verify that this algorithm creates such a partition, so we conclude that A ≥ 28. �

This second solution was suggested by Lewis Chen.

2. Let a, b, c be positive reals satisfying a+ b+ c = 7
√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Proposed by Evan Chen.

Solution 1. By weighted AM-GM we have that

1 =
∑
cyc

(
7
√
a

a+ b+ c

)
=
∑
cyc

(
a

a+ b+ c
· 1

7
√
a6

)

≥
(

1

aabbcc

) 6/7
a+b+c

.

Rearranging yields aabbcc ≥ 1. �

This problem and solution were proposed by Evan Chen.

Remark. The problem generalizes easily to n variables, and exponents other than 1
7 . Specif-

ically, if positive reals x1 + · · · + xn = xr1 + · · · + xrn for some real number r 6= 1, then∏
i≥1 x

xi
i ≥ 1 if and only if r < 1. When r ≤ 0, a Jensen solution is possible using only the

inequality a+ b+ c ≥ 3.

Solution 2. First we claim that a, b, c < 5. Assume the contrary, that a ≥ 5. Let f(x) =
x − 7
√
x. Since f ′(x) > 0 for x ≥ 5, we know that f(a) ≥ 5 − 7

√
5 > 3. But this means that

WLOG b− 7
√
b < −1.5, which is clearly false since b− 7

√
b ≥ 0 for b ≥ 1, and b− 7

√
b ≥ − 7

√
b ≥ −1

for 0 < b < 1. So indeed a, b, c < 5.

Now rewrite the inequality as

∑
a ln a ≥ 0⇔

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥ 0.

Now note that if g(x) = x
6
7 lnx, then g′′(x) = 35−6 ln x

49x
8
7

> 0 for x ∈ (0, 5). Therefore g is convex

and we can use Jensen’s Inequality to get

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

) 6
7

ln

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

)
.

Since
∑
a =

∑
a

1
7 , it suffices to show that

∑
a

8
7 ≥

∑
a. But by weighted AM-GM we have

6a
8
7 + a

1
7 ≥ 7a =⇒ a

8
7 − a ≥ 1

6
(a− 7

√
a).
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Adding up the analogous inequalities for b, c gives the desired result. �

This second solution was suggested by David Stoner.

Solution 3. Here we unify the two solutions above.

It’s well-known that weighted AM-GM follows from (and in fact, is equivalent to) the convexity
of ex (or equivalently, the concavity of lnx), as

∑
wie

xi ≥ e
∑
wixi for reals xi and nonnegative

weights wi summing to 1. However, it also follows from the convexity of y ln y (or equivalently,
the concavity of yey) for y > 0. Indeed, letting yi = exi > 0, and taking logs, weighted
AM-GM becomes∑

wiyi ·
1

yi
log

1

yi
≥ (
∑

wiyi)

∑
wiyi · 1

yi∑
wiyi

log

∑
wiyi · 1

yi∑
wiyi

,

which is clear.

To find Evan’s solution, we can use the concavity of lnx to get
∑
a ln a−s ≤ (

∑
a) ln

∑
a·a−s∑

a =

0. (Here we take s = 6/7 > 0.)

For a cleaner version of David’s solution, we can use the convexity of x lnx to get∑
a ln as =

∑
a1−s · as ln as ≥ (

∑
a1−s)

∑
a1−s · as∑
a1−s

ln

∑
a1−s · as∑
a1−s

= 0

(where we again take s = 6/7 > 0).

Both are pretty intuitive (but certainly not obvious) solutions once one realizes direct Jensen
goes in the wrong direction. In particular, s = 1 doesn’t work since we have a+ b+ c ≤ 3 from
the power mean inequality. �

This third solution was suggested by Victor Wang.

Solution 4. From et ≥ 1 + t for t = lnx−
6
7 , we find 6

7 lnx ≥ 1− x− 6
7 . Thus

6

7

∑
a ln a ≥

∑
a− a 1

7 = 0,

as desired. �

This fourth solution was suggested by chronodecay.

Remark. Polya once dreamed a similar proof of n-variable AM-GM: x ≥ 1 + lnx for positive
x, so

∑
xi ≥ n + ln

∏
xi. This establishes AM-GM when

∏
xi = 1; the rest follows by

homogenizing.

3. Letm1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers andA1, A2, . . . , A2013

be 2013 (possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi − 1} for i = 1, 2, . . . , 2013. Prove that
there is a positive integer N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Proposed by Victor Wang.

Remark. As Solution 3 shows, the bound can in fact be tightened to
∏2013
i=1 (|Ai|+ 1).

Solution 1. We will show that the smallest integer N such that N /∈ Ai (mod mi) is less
than the bound provided.

The idea is to use pigeonhole and the “Lagrange interpolation”-esque representation of CRT
systems. Define integers ti satisfying ti ≡ 1 (mod mi) and ti ≡ 0 (mod mj) for j 6= i. If we
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find nonempty sets Bi of distinct residues mod mi with Bi −Bi (mod mi) and Ai (mod mi)
disjoint, then by pigeonhole, a positive integer solution with N ≤ m1m2···m2013

|B1|·|B2|···|B2013| must exist

(more precisely, since

b1t1 + · · ·+ b2013t2013 (mod m1m2 · · ·m2013)

is injective over B1 × B2 × · · · × B2013, some two consecutively ordered solutions must differ
by at most m1m2···m2013

|B1|·|B2|···|B2013| ).

On the other hand, since 0 /∈ Ai for every i, we know such nonempty Bi must exist (e.g. take
Bi = {0}). Now suppose |Bi| is maximal; then every x (mod mi) lies in at least one of Bi,
Bi+Ai, Bi−Ai (note that x−x = 0 is not an issue when considering (Bi∪{x})− (Bi∪{x})),
or else Bi ∪ {x} would be a larger working set. Hence mi ≤ |Bi| + |Bi + Ai| + |Bi − Ai| ≤
|Bi|(1 + 2|Ai|), so we get an upper bound of

∏2013
i=1

mi
|Bi| ≤

∏2013
i=1 (2|Ai|+ 1), as desired. �

Remark. We can often find |Bi| significantly larger than mi
2|Ai|+1 (the bounds |Bi +Ai|, |Bi−

Ai| ≤ |Bi| · |Ai| seem really weak, and Bi +Ai, Bi−Ai might not be that disjoint either). For
instance, if Ai ≡ −Ai (mod mi), then we can get (the ceiling of) mi

|Ai|+1 .

Remark. By translation and repeated application of the problem, one can prove the following
slightly more general statement: “Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime
positive integers and A1, A2, . . . , A2013 be 2013 (possibly empty) sets with Ai a proper subset
of {1, 2, . . . ,mi} for i = 1, 2, . . . , 2013. Then for every integer n, there exists an integer x in

the range (n, n+
∏2013
i=1 (2|Ai|+ 1)] such that x /∈ Ai (mod mi) for i = 1, 2, . . . , 2013. (We say

A is a proper subset of B if A is a subset of B but A 6= B.)”

Remark. Let f be a non-constant integer-valued polynomial with gcd(. . . , f(−1), f(0), f(1), . . .) =
1. Then by the previous remark, we can easily prove that there exist infinitely many positive
integers n such that the smallest prime divisor of f(n) is at least c log n, where c > 0 is any
constant. (We take mi the ith prime and Ai ≡ {n : mi | f(n)} (mod mi)—if f = a

bx
d + · · · ,

then |Ai| ≤ d for all sufficiently large i.)

Solution 2. We will mimic the proof of 2010 RMM Problem 1.

Suppose 1, 2, . . . , N (for some N ≥ 1) can be covered by the sets Ai (mod mi).

Observe that for fixed m and 1 ≤ a ≤ m, exactly 1 + bN−am c of 1, 2, . . . , N are a (mod m). In

particular, we have lower and upper bounds of N−m
m and N+m

m , respectively, so PIE yields

N ≤
∑
i

|Ai|
N +mi

mi
−
∑
i<j

|Ai| · |Aj |
N −mimj

mimj
± · · · .

It follows that

N
∏
i

(
1− |Ai|

mi

)
≤
∏
i

(1 + |Ai|) ,

so N ≤
∏
i

mi
mi−|Ai| (1 + |Ai|).

Note that mi
mi−|Ai| ≤

2|Ai|+1
|Ai|+1 iff mi ≥ 2|Ai|+ 1, so we’re done unless mi ≤ 2|Ai| for some i.

In this case, there exists (by induction) 1 ≤ N ≤
∏
j 6=i(2|Aj | + 1) such that N /∈ m−1i Aj

(mod mj) for all j 6= i. Thus miN /∈ Aj (mod mj) and we trivially have miN ≡ 0 /∈ Ai
(mod mi), so miN ≤

∏
k(2|Ak|+ 1), as desired. �

This problem and the above solutions were proposed by Victor Wang.

Solution 3. We can in fact get a bound of
∏

(|Ak|+ 1) directly.

Let t = 2013. Suppose 1, 2, . . . , N are covered by the Ak (mod mk); then

zn =
∏

1≤k≤t,a∈Ak

(
1− e

2πi
mk

(n−a)
)

4

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=42&t=346738


is a linear recurrence in e
2πi

∑t
k=1

jk
mk (where each jk ranges from 0 to |Ak|). But z0 6= 0 =

z1 = · · · = zN , so N must be strictly less than the degree
∏

(|Ak|+ 1) of the linear recurrence.
Thus 1, 2, . . . ,

∏
(|Ak|+ 1) cannot all be covered, as desired. �

This third solution was suggested by Zhi-Wei Sun.

Remark. Solution 3 doesn’t require the mk to be coprime. Note that if |A1| = · · · = |At| =
b− 1, then a base b construction shows the bound of

∏
(b− 1 + 1) = bt is “tight” (if we remove

the restriction that the mk must be coprime).

However, Solutions 2 and 3 “ignore” the additive structure of CRT solution sets encapsulated
in Solution 1’s Lagrange interpolation representation.

4. Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and
AC again at S and R, respectively. Segments BR and CS meet at L, and rays LR and LS
intersect ω at D and E, respectively. The internal angle bisector of ∠BDE meets line ER at
K. Prove that if BE = BR, then ∠ELK = 1

2∠BCD.

Proposed by Evan Chen.

Solution 1.

B C

S
R

A

D

E

L

K

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR
centered at B, and notice that ∠ECR = 1

2∠EBR, implying that it lies on the circle.

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of 4CDE. Then, K is

the incenter of 4LED, so ∠ELK = 1
2∠ELD = 1

2

(
ÊD+B̂C

2

)
= 1

2
B̂ED

2 = 1
2∠BCD. �

This problem and solution were proposed by Evan Chen.

Solution 2. Note ∠EBA = ∠ECA = ∠SCR = ∠SBR = ∠ABR, so AB bisects ∠EBR.
Then by symmetry ∠BEA = ∠BRA, so ∠BCR = ∠BCA = 180− ∠BEA = 180− ∠BRA =
∠BRC, so BE = BR = BC. Proceed as above. �

This second solution was suggested by Michael Kural.
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5. For what polynomials P (n) with integer coefficients can a positive integer be assigned to every
lattice point in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any
n× n× n grid of lattice points is divisible by P (n)?

Proposed by Andre Arslan.

Answer. All P of the form P (x) = cxk, where c is a nonzero integer and k is a nonnegative
integer.

Solution. Suppose P (x) = xkQ(x) with Q(0) 6= 0 and Q is nonconstant; then there exist
infinitely many primes p dividing some Q(n); fix one of them not dividing Q(0), and take a
sequence of pairwise coprime integers m1, n1,m2, n2, . . . with p | Q(mi), Q(ni) (we can do this
with CRT).

Let f(x, y, z) be the number written at (x, y, z). Note that P (m) divides every mn×mn×m
grid and P (n) divides every mn×mn× n grid, so by Bezout’s identity, (P (m), P (n)) divides
every mn×mn×(m,n) grid. It follows that p divides every mini×mini×1 grid. Similarly, we
find that p divides every minimjnj×1×1 grid whenever i 6= j, and finally, every 1×1×1 grid.
Since p was arbitrarily chosen from an infinite set, f must be identically zero, contradiction.

For the other direction, take a solution g to the one-dimensional case using repeated CRT
(the key relation gcd(P (m), P (n)) = P (gcd(m,n)) prevents “conflicts”): start with a positive
multiple of P (1) 6= 0 at zero, and then construct g(1), g(−1), g(2), g(−2), etc. in that order
using CRT. Now for the three-dimensional version, we can just let f(x, y, z) = g(x). �

This problem and solution were proposed by Andre Arslan.

Remark. The crux of the problem lies in the 1D case. (We use the same type of reasoning to
“project” from d dimension to d− 1 dimensions.) Note that the condition P (n) | g(i) + · · ·+
g(i+n−1) (for the 1D case) is “almost” the same as P (n) | g(i)− g(i+n), so we immediately
find gcd(P (m), P (n)) | g(i) − g(i + gcd(m,n)) by Bezout’s identity. In particular, when m,n
are coprime, we will intuitively be able to get gcd(P (m), P (n)) as large as we want unless P
is of the form cxk (we formalize this by writing P = xkQ with Q(0) 6= 0).

Conversely, if P = cxk, then gcd(P (m), P (n)) = P (gcd(m,n)) renders our derived restriction
gcd(P (m), P (n)) | g(i) − g(i + gcd(m,n)) superfluous. So it “feels easy” to find nonconstant
g with P (n) | g(i) − g(i + n) for all i, n, just by greedily constructing g(0), g(1), g(−1), . . . in
that order using CRT. Fortunately, g(i) + · · · + g(i + m − 1) − g(i) − · · · − g(i + n − 1) =
g(i+ n) + · · ·+ g(i+ n+ (m− n)− 1) for m > n, so the inductive approach still works for the
stronger condition P (n) | g(i) + · · ·+ g(i+ n− 1).

Remark. Note that polynomial constructions cannot work for P = cxd+1 in d dimen-
sions. Suppose otherwise, and take a minimal degree f(x1, . . . , xd); then f isn’t constant,
so f ′(x1, . . . , xd) = f(x1 + 1, . . . , xd + 1) − f(x1, . . . , xd) is a working polynomial of strictly
smaller degree.

6. Consider a function f : Z → Z such that for every integer n ≥ 0, there are at most 0.001n2

pairs of integers (x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible
that for some integer n ≥ 0, there are more than n integers a such that f(a) 6= a · f(1) and
|a| ≤ n?

Proposed by David Yang.

Answer. No.

Solution. Call an integer conformist if f(n) = n · f(1). Call a pair (x, y) good if f(x+ y) =
f(x)+f(y) and bad otherwise. Let h(n) denote the number of conformist integers with absolute
value at most n.
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Let ε = 0.001, S be the set of conformist integers, T = Z \ S be the set of non-conformist
integers, and Xn = [−n, n] ∩ X for sets X and positive integers n (so |Sn| = h(n)); clearly
|Tn| = 2n+ 1− h(n).

First we can easily get h(n) = 2n+ 1 (−n to n are all conformist) for n ≤ 10.

Lemma 1. Suppose a, b are positive integers such that h(a) > a and b ≤ 2h(a)−2a−1. Then
h(b) ≥ 2b(1−

√
ε)− 1.

Proof. For any integer t, we have

|Sa ∩ (t− Sa)| = |Sa|+ |t− Sa| − |Sa ∪ (t− Sa)|
≥ 2h(a)− (max (Sa ∪ (t− Sa))−min (Sa ∪ (t− Sa)) + 1)

≥ 2h(a)− (max(a, t+ a)−min(−a, t− a) + 1)

= 2h(a)− (|t|+ 2a+ 1)

≥ b− |t|.

But (x, y) is bad whenever x, y ∈ S yet x + y ∈ T , so summing over all t ∈ Tb (assuming
|Tb| ≥ 2) yields

εb2 ≥ g(b) ≥
∑
t∈Tb

|Sa ∩ (t− Sa)|

≥
∑
t∈Tb

(b− |t|) ≥
b|Tb|/2c−1∑

k=0

k +

d|Tb|/2e−1∑
k=0

k ≥ 2
1

2
(|Tb|/2)(|Tb|/2− 1),

where we use br/2c + dr/2e = r (for r ∈ Z) and the convexity of 1
2x(x − 1). We conclude

that |Tb| ≤ 2 + 2b
√
ε (which obviously remains true without the assumption |Tb| ≥ 2) and

h(b) = 2b+ 1− |Tb| ≥ 2b(1−
√
ε)− 1.

Now we prove by induction on n that h(n) ≥ 2n(1 −
√
ε) − 1 for all n ≥ 10, where the base

case is clear. If we assume the result for n− 1 (n > 10), then in view of the lemma, it suffices
to show that 2h(n− 1)− 2(n− 1)− 1 ≥ n, or equivalently, 2h(n− 1) ≥ 3n− 1. But

2h(n− 1) ≥ 4(n− 1)(1−
√
ε)− 2 ≥ 3n− 1,

so we’re done. (The second inequality is equivalent to n(1− 4
√
ε) ≥ 5− 4

√
ε; n ≥ 11 reduces

this to 6 ≥ 40
√
ε = 40

√
0.001 = 4

√
0.1, which is obvious.) �

This problem and solution were proposed by David Yang.
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