$15{ }^{\text {th }}$ Everyone Lives at Most Once

ELMO 2013

Lincoln, Nebraska

OFFICIAL SOLUTIONS

1. Let $a_{1}, a_{2}, \ldots, a_{9}$ be nine real numbers, not necessarily distinct, with average m. Let A denote the number of triples $1 \leq i<j<k \leq 9$ for which $a_{i}+a_{j}+a_{k} \geq 3 m$. What is the minimum possible value of A ?

Proposed by Ray Li.
Answer. $A \geq 28$.
Solution 1. Call a 3-set good iff it has average at least m, and let S be the family of good sets.
The equality case $A=28$ can be achieved when $a_{1}=\cdots=a_{8}=0$ and $a_{9}=1$. Here $m=\frac{1}{9}$, and the good sets are precisely those containing a_{9}. This gives a total of $\binom{8}{2}=28$.
To prove the lower bound, suppose we have exactly N good 3 -sets, and let $p=\frac{N}{\binom{9}{3}}$ denote the probability that a randomly chosen 3 -set is good. Now, consider a random permutation π of $\{1,2, \ldots, 9\}$. Then the corresponding partition $\bigcup_{i=0}^{2}\{\pi(3 i+1), \pi(3 i+2), \pi(3 i+3)\}$ has at least 1 good 3 -set, so by the linearity of expectation,

$$
\begin{aligned}
1 & \leq \mathbb{E}\left[\sum_{i=0}^{2}[\{\pi(3 i+1), \pi(3 i+2), \pi(3 i+3)\} \in S]\right] \\
& =\sum_{i=0}^{2}[\mathbb{E}[\{\pi(3 i+1), \pi(3 i+2), \pi(3 i+3)\} \in S]] \\
& =\sum_{i=0}^{2} 1 \cdot p=3 p .
\end{aligned}
$$

Hence $N=p\binom{9}{3} \geq \frac{1}{3}\binom{9}{3}=28$, establishing the lower bound.
This problem and solution were proposed by Ray Li.
Remark. One can use double-counting rather than expectation to prove $N \geq 28$. In any case, this method generalizes effortlessly to larger numbers.
Solution 2. Proceed as above to get an upper bound of 28 .
On the other hand, we will show that we can partition the $\binom{9}{3}=843$-sets into 28 groups of 3 , such that in any group, the elements $a_{1}, a_{2}, \cdots, a_{9}$ all appear. This will imply the conclusion, since if $A<28$, then there are at least 57 sets with average at most m, but by pigeonhole three of them must be in such a group, which is clearly impossible.
Consider a 3 -set and the following array:

a_{1}	a_{2}	a_{3}
a_{4}	a_{5}	a_{6}
a_{7}	a_{8}	a_{9}

Consider a set $|S|=3$. We obtain the other two 3 -sets in the group as follows:

- If S contains one element in each column, then shift the elements down cyclically mod 3 .
- If S contains one element in each row, then shift the elements right cyclically mod 3 . Note that the result coincides with the previous case if both conditions are satisfied.
- Otherwise, the elements of S are "constrained" in a 2×2 box, possibly shifted diagonally. In this case, we get an L-tromino. Then shift diagonally in the direction the L-tromino points in.

One can verify that this algorithm creates such a partition, so we conclude that $A \geq 28$.
This second solution was suggested by Lewis Chen.
2. Let a, b, c be positive reals satisfying $a+b+c=\sqrt[7]{a}+\sqrt[7]{b}+\sqrt[7]{c}$. Prove that $a^{a} b^{b} c^{c} \geq 1$.

Proposed by Evan Chen.
Solution 1. By weighted AM-GM we have that

$$
\begin{aligned}
1 & =\sum_{\text {cyc }}\left(\frac{\sqrt[7]{a}}{a+b+c}\right) \\
& =\sum_{\text {cyc }}\left(\frac{a}{a+b+c} \cdot \frac{1}{\sqrt[7]{a^{6}}}\right) \\
& \geq\left(\frac{1}{a^{a} b^{b} c^{c}}\right)^{\frac{6 / 7}{a+b+c}} .
\end{aligned}
$$

Rearranging yields $a^{a} b^{b} c^{c} \geq 1$.
This problem and solution were proposed by Evan Chen.
Remark. The problem generalizes easily to n variables, and exponents other than $\frac{1}{7}$. Specifically, if positive reals $x_{1}+\cdots+x_{n}=x_{1}^{r}+\cdots+x_{n}^{r}$ for some real number $r \neq 1$, then $\prod_{i \geq 1} x_{i}^{x_{i}} \geq 1$ if and only if $r<1$. When $r \leq 0$, a Jensen solution is possible using only the inequality $a+b+c \geq 3$.
Solution 2. First we claim that $a, b, c<5$. Assume the contrary, that $a \geq 5$. Let $f(x)=$ $x-\sqrt[7]{x}$. Since $f^{\prime}(x)>0$ for $x \geq 5$, we know that $f(a) \geq 5-\sqrt[7]{5}>3$. But this means that WLOG $b-\sqrt[7]{b}<-1.5$, which is clearly false since $b-\sqrt[7]{b} \geq 0$ for $b \geq 1$, and $b-\sqrt[7]{b} \geq-\sqrt[7]{b} \geq-1$ for $0<b<1$. So indeed $a, b, c<5$.
Now rewrite the inequality as

$$
\sum a \ln a \geq 0 \Leftrightarrow \sum\left(\frac{a^{\frac{1}{7}}}{a^{\frac{1}{7}}+b^{\frac{1}{7}}+c^{\frac{1}{7}}}\right)\left(a^{\frac{6}{7}} \ln a\right) \geq 0 .
$$

Now note that if $g(x)=x^{\frac{6}{7}} \ln x$, then $g^{\prime \prime}(x)=\frac{35-6 \ln x}{49 x^{\frac{8}{7}}}>0$ for $x \in(0,5)$. Therefore g is convex and we can use Jensen's Inequality to get

$$
\sum\left(\frac{a^{\frac{1}{7}}}{a^{\frac{1}{7}}+b^{\frac{1}{7}}+c^{\frac{1}{7}}}\right)\left(a^{\frac{6}{7}} \ln a\right) \geq\left(\sum \frac{a^{\frac{8}{7}}}{a^{\frac{1}{7}}+b^{\frac{1}{7}}+c^{\frac{1}{7}}}\right)^{\frac{6}{7}} \ln \left(\sum \frac{a^{\frac{8}{7}}}{a^{\frac{1}{7}}+b^{\frac{1}{7}}+c^{\frac{1}{7}}}\right)
$$

Since $\sum a=\sum a^{\frac{1}{7}}$, it suffices to show that $\sum a^{\frac{8}{7}} \geq \sum a$. But by weighted AM-GM we have

$$
6 a^{\frac{8}{7}}+a^{\frac{1}{7}} \geq 7 a \Longrightarrow a^{\frac{8}{7}}-a \geq \frac{1}{6}(a-\sqrt[7]{a})
$$

Adding up the analogous inequalities for b, c gives the desired result.
This second solution was suggested by David Stoner.
Solution 3. Here we unify the two solutions above.
It's well-known that weighted AM-GM follows from (and in fact, is equivalent to) the convexity of e^{x} (or equivalently, the concavity of $\ln x$), as $\sum w_{i} e^{x_{i}} \geq e^{\sum w_{i} x_{i}}$ for reals x_{i} and nonnegative weights w_{i} summing to 1 . However, it also follows from the convexity of $y \ln y$ (or equivalently, the concavity of $y e^{y}$) for $y>0$. Indeed, letting $y_{i}=e^{x_{i}}>0$, and taking logs, weighted AM-GM becomes

$$
\sum w_{i} y_{i} \cdot \frac{1}{y_{i}} \log \frac{1}{y_{i}} \geq\left(\sum w_{i} y_{i}\right) \frac{\sum w_{i} y_{i} \cdot \frac{1}{y_{i}}}{\sum w_{i} y_{i}} \log \frac{\sum w_{i} y_{i} \cdot \frac{1}{y_{i}}}{\sum w_{i} y_{i}}
$$

which is clear.
To find Evan's solution, we can use the concavity of $\ln x$ to get $\sum a \ln a^{-s} \leq\left(\sum a\right) \ln \sum \frac{a \cdot a^{-s}}{\sum a}=$ 0 . (Here we take $s=6 / 7>0$.)
For a cleaner version of David's solution, we can use the convexity of $x \ln x$ to get

$$
\sum a \ln a^{s}=\sum a^{1-s} \cdot a^{s} \ln a^{s} \geq\left(\sum a^{1-s}\right) \frac{\sum a^{1-s} \cdot a^{s}}{\sum a^{1-s}} \ln \frac{\sum a^{1-s} \cdot a^{s}}{\sum a^{1-s}}=0
$$

(where we again take $s=6 / 7>0$).
Both are pretty intuitive (but certainly not obvious) solutions once one realizes direct Jensen goes in the wrong direction. In particular, $s=1$ doesn't work since we have $a+b+c \leq 3$ from the power mean inequality.
This third solution was suggested by Victor Wang.
Solution 4. From $e^{t} \geq 1+t$ for $t=\ln x^{-\frac{6}{7}}$, we find $\frac{6}{7} \ln x \geq 1-x^{-\frac{6}{7}}$. Thus

$$
\frac{6}{7} \sum a \ln a \geq \sum a-a^{\frac{1}{7}}=0
$$

as desired.
This fourth solution was suggested by chronodecay.
Remark. Polya once dreamed a similar proof of n-variable AM-GM: $x \geq 1+\ln x$ for positive x, so $\sum x_{i} \geq n+\ln \prod x_{i}$. This establishes AM-GM when $\prod x_{i}=1$; the rest follows by homogenizing.
3. Let $m_{1}, m_{2}, \ldots, m_{2013}>1$ be 2013 pairwise relatively prime positive integers and $A_{1}, A_{2}, \ldots, A_{2013}$ be 2013 (possibly empty) sets with $A_{i} \subseteq\left\{1,2, \ldots, m_{i}-1\right\}$ for $i=1,2, \ldots, 2013$. Prove that there is a positive integer N such that

$$
N \leq\left(2\left|A_{1}\right|+1\right)\left(2\left|A_{2}\right|+1\right) \cdots\left(2\left|A_{2013}\right|+1\right)
$$

and for each $i=1,2, \ldots, 2013$, there does not exist $a \in A_{i}$ such that m_{i} divides $N-a$.
Proposed by Victor Wang.
Remark. As Solution 3 shows, the bound can in fact be tightened to $\prod_{i=1}^{2013}\left(\left|A_{i}\right|+1\right)$.
Solution 1. We will show that the smallest integer N such that $N \notin A_{i}\left(\bmod m_{i}\right)$ is less than the bound provided.
The idea is to use pigeonhole and the "Lagrange interpolation"-esque representation of CRT systems. Define integers t_{i} satisfying $t_{i} \equiv 1\left(\bmod m_{i}\right)$ and $t_{i} \equiv 0\left(\bmod m_{j}\right)$ for $j \neq i$. If we
find nonempty sets B_{i} of distinct residues $\bmod m_{i}$ with $B_{i}-B_{i}\left(\bmod m_{i}\right)$ and $A_{i}\left(\bmod m_{i}\right)$ disjoint, then by pigeonhole, a positive integer solution with $N \leq \frac{m_{1} m_{2} \cdots m_{2013}}{\left|B_{1}\right| \cdot\left|B_{2}\right| \cdots\left|B_{2013}\right|}$ must exist (more precisely, since

$$
b_{1} t_{1}+\cdots+b_{2013} t_{2013} \quad\left(\bmod m_{1} m_{2} \cdots m_{2013}\right)
$$

is injective over $B_{1} \times B_{2} \times \cdots \times B_{2013}$, some two consecutively ordered solutions must differ by at most $\left.\frac{m_{1} m_{2} \cdots m_{2013}}{\left|B_{1}\right| \cdot\left|B_{2}\right| \cdots\left|B_{2013}\right|}\right)$.
On the other hand, since $0 \notin A_{i}$ for every i, we know such nonempty B_{i} must exist (e.g. take $\left.B_{i}=\{0\}\right)$. Now suppose $\left|B_{i}\right|$ is maximal; then every $x\left(\bmod m_{i}\right)$ lies in at least one of B_{i}, $B_{i}+A_{i}, B_{i}-A_{i}$ (note that $x-x=0$ is not an issue when considering $\left(B_{i} \cup\{x\}\right)-\left(B_{i} \cup\{x\}\right)$), or else $B_{i} \cup\{x\}$ would be a larger working set. Hence $m_{i} \leq\left|B_{i}\right|+\left|B_{i}+A_{i}\right|+\left|B_{i}-A_{i}\right| \leq$ $\left|B_{i}\right|\left(1+2\left|A_{i}\right|\right)$, so we get an upper bound of $\prod_{i=1}^{2013} \frac{m_{i}}{\left|B_{i}\right|} \leq \prod_{i=1}^{2013}\left(2\left|A_{i}\right|+1\right)$, as desired.
Remark. We can often find $\left|B_{i}\right|$ significantly larger than $\frac{m_{i}}{2\left|A_{i}\right|+1}$ (the bounds $\left|B_{i}+A_{i}\right|, \mid B_{i}-$ $A_{i}\left|\leq\left|B_{i}\right| \cdot\right| A_{i} \mid$ seem really weak, and $B_{i}+A_{i}, B_{i}-A_{i}$ might not be that disjoint either). For instance, if $A_{i} \equiv-A_{i}\left(\bmod m_{i}\right)$, then we can get (the ceiling of) $\frac{m_{i}}{\left|A_{i}\right|+1}$.
Remark. By translation and repeated application of the problem, one can prove the following slightly more general statement: "Let $m_{1}, m_{2}, \ldots, m_{2013}>1$ be 2013 pairwise relatively prime positive integers and $A_{1}, A_{2}, \ldots, A_{2013}$ be 2013 (possibly empty) sets with A_{i} a proper subset of $\left\{1,2, \ldots, m_{i}\right\}$ for $i=1,2, \ldots, 2013$. Then for every integer n, there exists an integer x in the range $\left(n, n+\prod_{i=1}^{2013}\left(2\left|A_{i}\right|+1\right)\right]$ such that $x \notin A_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, 2013$. (We say A is a proper subset of B if A is a subset of B but $A \neq B$.)"
Remark. Let f be a non-constant integer-valued polynomial with $\operatorname{gcd}(\ldots, f(-1), f(0), f(1), \ldots)=$ 1. Then by the previous remark, we can easily prove that there exist infinitely many positive integers n such that the smallest prime divisor of $f(n)$ is at least $c \log n$, where $c>0$ is any constant. (We take m_{i} the i th prime and $A_{i} \equiv\left\{n: m_{i} \mid f(n)\right\}\left(\bmod m_{i}\right)$ if $f=\frac{a}{b} x^{d}+\cdots$, then $\left|A_{i}\right| \leq d$ for all sufficiently large i.)
Solution 2. We will mimic the proof of 2010 RMM Problem 1.
Suppose $1,2, \ldots, N$ (for some $N \geq 1)$ can be covered by the sets $A_{i}\left(\bmod m_{i}\right)$.
Observe that for fixed m and $1 \leq a \leq m$, exactly $1+\left\lfloor\frac{N-a}{m}\right\rfloor$ of $1,2, \ldots, N$ are $a(\bmod m)$. In particular, we have lower and upper bounds of $\frac{N-m}{m}$ and $\frac{N+m}{m}$, respectively, so PIE yields

$$
N \leq \sum_{i}\left|A_{i}\right| \frac{N+m_{i}}{m_{i}}-\sum_{i<j}\left|A_{i}\right| \cdot\left|A_{j}\right| \frac{N-m_{i} m_{j}}{m_{i} m_{j}} \pm \cdots
$$

It follows that

$$
N \prod_{i}\left(1-\frac{\left|A_{i}\right|}{m_{i}}\right) \leq \prod_{i}\left(1+\left|A_{i}\right|\right),
$$

so $N \leq \prod_{i} \frac{m_{i}}{m_{i}-\left|A_{i}\right|}\left(1+\left|A_{i}\right|\right)$.
Note that $\frac{m_{i}}{m_{i}-\left|A_{i}\right|} \leq \frac{2\left|A_{i}\right|+1}{\left|A_{i}\right|+1}$ iff $m_{i} \geq 2\left|A_{i}\right|+1$, so we're done unless $m_{i} \leq 2\left|A_{i}\right|$ for some i.
In this case, there exists (by induction) $1 \leq N \leq \prod_{j \neq i}\left(2\left|A_{j}\right|+1\right)$ such that $N \notin m_{i}^{-1} A_{j}$ $\left(\bmod m_{j}\right)$ for all $j \neq i$. Thus $m_{i} N \notin A_{j}\left(\bmod m_{j}\right)$ and we trivially have $m_{i} N \equiv 0 \notin A_{i}$ $\left(\bmod m_{i}\right)$, so $m_{i} N \leq \prod_{k}\left(2\left|A_{k}\right|+1\right)$, as desired.
This problem and the above solutions were proposed by Victor Wang.
Solution 3. We can in fact get a bound of $\prod\left(\left|A_{k}\right|+1\right)$ directly.
Let $t=2013$. Suppose $1,2, \ldots, N$ are covered by the $A_{k}\left(\bmod m_{k}\right)$; then

$$
z_{n}=\prod_{1 \leq k \leq t, a \in A_{k}}\left(1-e^{\frac{2 \pi i}{m_{k}}(n-a)}\right)
$$

is a linear recurrence in $e^{2 \pi i \sum_{k=1}^{t} \frac{j_{k}}{m_{k}}}$ (where each j_{k} ranges from 0 to $\left|A_{k}\right|$). But $z_{0} \neq 0=$ $z_{1}=\cdots=z_{N}$, so N must be strictly less than the degree $\prod\left(\left|A_{k}\right|+1\right)$ of the linear recurrence. Thus $1,2, \ldots, \Pi\left(\left|A_{k}\right|+1\right)$ cannot all be covered, as desired.

This third solution was suggested by Zhi-Wei Sun.
Remark. Solution 3 doesn't require the m_{k} to be coprime. Note that if $\left|A_{1}\right|=\cdots=\left|A_{t}\right|=$ $b-1$, then a base b construction shows the bound of $\prod(b-1+1)=b^{t}$ is "tight" (if we remove the restriction that the m_{k} must be coprime).

However, Solutions 2 and 3"ignore" the additive structure of CRT solution sets encapsulated in Solution 1's Lagrange interpolation representation.
4. Triangle $A B C$ is inscribed in circle ω. A circle with chord $B C$ intersects segments $A B$ and $A C$ again at S and R, respectively. Segments $B R$ and $C S$ meet at L, and rays $L R$ and $L S$ intersect ω at D and E, respectively. The internal angle bisector of $\angle B D E$ meets line $E R$ at K. Prove that if $B E=B R$, then $\angle E L K=\frac{1}{2} \angle B C D$.
Proposed by Evan Chen.

Solution 1.

First, we claim that $B E=B R=B C$. Indeed, construct a circle with radius $B E=B R$ centered at B, and notice that $\angle E C R=\frac{1}{2} \angle E B R$, implying that it lies on the circle.
Now, $C A$ bisects $\angle E C D$ and $D B$ bisects $\angle E D C$, so R is the incenter of $\triangle C D E$. Then, K is the incenter of $\triangle L E D$, so $\angle E L K=\frac{1}{2} \angle E L D=\frac{1}{2}\left(\frac{\widehat{E D}+\widehat{B C}}{2}\right)=\frac{1}{2} \frac{\widehat{B E D}}{2}=\frac{1}{2} \angle B C D$.
This problem and solution were proposed by Evan Chen.
Solution 2. Note $\angle E B A=\angle E C A=\angle S C R=\angle S B R=\angle A B R$, so $A B$ bisects $\angle E B R$. Then by symmetry $\angle B E A=\angle B R A$, so $\angle B C R=\angle B C A=180-\angle B E A=180-\angle B R A=$ $\angle B R C$, so $B E=B R=B C$. Proceed as above.
This second solution was suggested by Michael Kural.
5. For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in \mathbb{R}^{3} so that for every integer $n \geq 1$, the sum of the n^{3} integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$?
Proposed by Andre Arslan.
Answer. All P of the form $P(x)=c x^{k}$, where c is a nonzero integer and k is a nonnegative integer.
Solution. Suppose $P(x)=x^{k} Q(x)$ with $Q(0) \neq 0$ and Q is nonconstant; then there exist infinitely many primes p dividing some $Q(n)$; fix one of them not dividing $Q(0)$, and take a sequence of pairwise coprime integers $m_{1}, n_{1}, m_{2}, n_{2}, \ldots$ with $p \mid Q\left(m_{i}\right), Q\left(n_{i}\right)$ (we can do this with CRT).
Let $f(x, y, z)$ be the number written at (x, y, z). Note that $P(m)$ divides every $m n \times m n \times m$ grid and $P(n)$ divides every $m n \times m n \times n$ grid, so by Bezout's identity, $(P(m), P(n))$ divides every $m n \times m n \times(m, n)$ grid. It follows that p divides every $m_{i} n_{i} \times m_{i} n_{i} \times 1$ grid. Similarly, we find that p divides every $m_{i} n_{i} m_{j} n_{j} \times 1 \times 1$ grid whenever $i \neq j$, and finally, every $1 \times 1 \times 1$ grid. Since p was arbitrarily chosen from an infinite set, f must be identically zero, contradiction.
For the other direction, take a solution g to the one-dimensional case using repeated CRT (the key relation $\operatorname{gcd}(P(m), P(n))=P(\operatorname{gcd}(m, n))$ prevents "conflicts"): start with a positive multiple of $P(1) \neq 0$ at zero, and then construct $g(1), g(-1), g(2), g(-2)$, etc. in that order using CRT. Now for the three-dimensional version, we can just let $f(x, y, z)=g(x)$.
This problem and solution were proposed by Andre Arslan.
Remark. The crux of the problem lies in the 1D case. (We use the same type of reasoning to "project" from d dimension to $d-1$ dimensions.) Note that the condition $P(n) \mid g(i)+\cdots+$ $g(i+n-1)$ (for the 1D case) is "almost" the same as $P(n) \mid g(i)-g(i+n)$, so we immediately find $\operatorname{gcd}(P(m), P(n)) \mid g(i)-g(i+\operatorname{gcd}(m, n))$ by Bezout's identity. In particular, when m, n are coprime, we will intuitively be able to get $\operatorname{gcd}(P(m), P(n))$ as large as we want unless P is of the form $c x^{k}$ (we formalize this by writing $P=x^{k} Q$ with $Q(0) \neq 0$).
Conversely, if $P=c x^{k}$, then $\operatorname{gcd}(P(m), P(n))=P(\operatorname{gcd}(m, n))$ renders our derived restriction $\operatorname{gcd}(P(m), P(n)) \mid g(i)-g(i+\operatorname{gcd}(m, n))$ superfluous. So it "feels easy" to find nonconstant g with $P(n) \mid g(i)-g(i+n)$ for all i, n, just by greedily constructing $g(0), g(1), g(-1), \ldots$ in that order using CRT. Fortunately, $g(i)+\cdots+g(i+m-1)-g(i)-\cdots-g(i+n-1)=$ $g(i+n)+\cdots+g(i+n+(m-n)-1)$ for $m>n$, so the inductive approach still works for the stronger condition $P(n) \mid g(i)+\cdots+g(i+n-1)$.
Remark. Note that polynomial constructions cannot work for $P=c x^{d+1}$ in d dimensions. Suppose otherwise, and take a minimal degree $f\left(x_{1}, \ldots, x_{d}\right)$; then f isn't constant, so $f^{\prime}\left(x_{1}, \ldots, x_{d}\right)=f\left(x_{1}+1, \ldots, x_{d}+1\right)-f\left(x_{1}, \ldots, x_{d}\right)$ is a working polynomial of strictly smaller degree.
6. Consider a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for every integer $n \geq 0$, there are at most $0.001 n^{2}$ pairs of integers (x, y) for which $f(x+y) \neq f(x)+f(y)$ and $\max \{|x|,|y|\} \leq n$. Is it possible that for some integer $n \geq 0$, there are more than n integers a such that $f(a) \neq a \cdot f(1)$ and $|a| \leq n ?$
Proposed by David Yang.
Answer. No.
Solution. Call an integer conformist if $f(n)=n \cdot f(1)$. Call a pair (x, y) good if $f(x+y)=$ $f(x)+f(y)$ and bad otherwise. Let $h(n)$ denote the number of conformist integers with absolute value at most n.

Let $\epsilon=0.001, S$ be the set of conformist integers, $T=\mathbb{Z} \backslash S$ be the set of non-conformist integers, and $X_{n}=[-n, n] \cap X$ for sets X and positive integers n (so $\left|S_{n}\right|=h(n)$); clearly $\left|T_{n}\right|=2 n+1-h(n)$.
First we can easily get $h(n)=2 n+1(-n$ to n are all conformist) for $n \leq 10$.
Lemma 1. Suppose a, b are positive integers such that $h(a)>a$ and $b \leq 2 h(a)-2 a-1$. Then $h(b) \geq 2 b(1-\sqrt{\epsilon})-1$.

Proof. For any integer t, we have

$$
\begin{aligned}
\left|S_{a} \cap\left(t-S_{a}\right)\right| & =\left|S_{a}\right|+\left|t-S_{a}\right|-\left|S_{a} \cup\left(t-S_{a}\right)\right| \\
& \geq 2 h(a)-\left(\max \left(S_{a} \cup\left(t-S_{a}\right)\right)-\min \left(S_{a} \cup\left(t-S_{a}\right)\right)+1\right) \\
& \geq 2 h(a)-(\max (a, t+a)-\min (-a, t-a)+1) \\
& =2 h(a)-(|t|+2 a+1) \\
& \geq b-|t|
\end{aligned}
$$

But (x, y) is bad whenever $x, y \in S$ yet $x+y \in T$, so summing over all $t \in T_{b}$ (assuming $\left.\left|T_{b}\right| \geq 2\right)$ yields

$$
\begin{aligned}
\epsilon b^{2} \geq g(b) & \geq \sum_{t \in T_{b}}\left|S_{a} \cap\left(t-S_{a}\right)\right| \\
& \geq \sum_{t \in T_{b}}(b-|t|) \geq \sum_{k=0}^{\left\lfloor\left|T_{b}\right| / 2\right\rfloor-1} k+\sum_{k=0}^{\left\lceil\left|T_{b}\right| / 2\right\rceil-1} k \geq 2 \frac{1}{2}\left(\left|T_{b}\right| / 2\right)\left(\left|T_{b}\right| / 2-1\right)
\end{aligned}
$$

where we use $\lfloor r / 2\rfloor+\lceil r / 2\rceil=r$ (for $r \in \mathbb{Z}$) and the convexity of $\frac{1}{2} x(x-1)$. We conclude that $\left|T_{b}\right| \leq 2+2 b \sqrt{\epsilon}$ (which obviously remains true without the assumption $\left|T_{b}\right| \geq 2$) and $h(b)=2 b+1-\left|T_{b}\right| \geq 2 b(1-\sqrt{\epsilon})-1$.

Now we prove by induction on n that $h(n) \geq 2 n(1-\sqrt{\epsilon})-1$ for all $n \geq 10$, where the base case is clear. If we assume the result for $n-1(n>10)$, then in view of the lemma, it suffices to show that $2 h(n-1)-2(n-1)-1 \geq n$, or equivalently, $2 h(n-1) \geq 3 n-1$. But

$$
2 h(n-1) \geq 4(n-1)(1-\sqrt{\epsilon})-2 \geq 3 n-1
$$

so we're done. (The second inequality is equivalent to $n(1-4 \sqrt{\epsilon}) \geq 5-4 \sqrt{\epsilon} ; n \geq 11$ reduces this to $6 \geq 40 \sqrt{\epsilon}=40 \sqrt{0.001}=4 \sqrt{0.1}$, which is obvious.)
This problem and solution were proposed by David Yang.

