Note: For any geometry problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

1. In acute triangle ABC, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through D tangent to ω at E and F, respectively. Show that ω_1 and ω_2 meet at a point P on BC other than D.

2. Find all ordered pairs of positive integers (m, n) for which there exists a set $C = \{c_1, \ldots, c_k\}$ ($k \geq 1$) of colors and an assignment of colors to each of the mn unit squares of a $m \times n$ grid such that for every color $c_i \in C$ and unit square S of color c_i, exactly two direct (non-diagonal) neighbors of S have color c_i.

3. Let f, g be polynomials with complex coefficients such that $\gcd(\deg f, \deg g) = 1$. Suppose that there exist polynomials $P(x, y)$ and $Q(x, y)$ with complex coefficients such that $f(x) + g(y) = P(x, y)Q(x, y)$. Show that one of P and Q must be constant.
Every Little Mistake ⇒ 0
Lincoln, Nebraska
Day II 8 a.m. - 12:30 p.m.
June 17, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

4. Let \(a_0, b_0 \) be positive integers, and define \(a_{i+1} = a_i + \lfloor \sqrt{b_i} \rfloor \) and \(b_{i+1} = b_i + \lfloor \sqrt{a_i} \rfloor \) for all \(i \geq 0 \). Show that there exists a positive integer \(n \) such that \(a_n = b_n \).

5. Let \(ABC \) be an acute triangle with \(AB < AC \), and let \(D \) and \(E \) be points on side \(BC \) such that \(BD = CE \) and \(D \) lies between \(B \) and \(E \). Suppose there exists a point \(P \) inside \(ABC \) such that \(PD \parallel AE \) and \(\angle PAB = \angle EAC \). Prove that \(\angle PBA = \angle PCA \).

6. A diabolical combination lock has \(n \) dials (each with \(c \) possible states), where \(n, c > 1 \). The dials are initially set to states \(d_1, d_2, \ldots, d_n \), where \(0 \leq d_i \leq c - 1 \) for each \(1 \leq i \leq n \). Unfortunately, the actual states of the dials (the \(d_i \)'s) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount \(c_i \) (\(0 \leq c_i \leq c - 1 \)), so that every dial is now in a state \(d_i' \equiv d_i + c_i \pmod{c} \) with \(0 \leq d_i' \leq c - 1 \). After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer \(k \) and cyclically shifts the \(d_i \)'s by \(k \) (so that for every \(i \), \(d_i \) is replaced by \(d_i-k \), where indices are taken modulo \(n \)).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of \(k \) (which may vary from turn to turn), if and only if \(n \) and \(c \) are powers of the same prime.