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This is a compilation of solutions for the 2018 EGMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be a triangle with CA = CB and ∠ACB = 120◦, and let M be the

midpoint of AB. Let P be a variable point of the circumcircle of ABC, and let Q
be the point on the segment CP such that QP = 2QC. It is given that the line
through P and perpendicular to AB intersects the line MQ at a unique point N .
Prove that there exists a fixed circle such that N lies on this circle for all possible
positions of P .

2. Consider the set
A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be
written as the product of f(x) elements of A (not necessarily distinct). Prove that
there are infinitely many pairs of integers x ≥ 2 and y ≥ 2 for which

f(xy) < f(x) + f(y).

3. The n contestants of EGMO are named C1, C2, . . . , Cn. After the competition,
they queue in front of the restaurant according to the following rules.

• The Jury chooses the initial order of the contestants in the queue.
• Every minute, the Jury chooses an integer i with 1 ≤ i ≤ n.

– If contestant Ci has at least i other contestants in front of her, she pays one
euro to the Jury and moves forward in the queue by exactly i positions.

– If contestant Ci has fewer than i other contestants in front of her, the
restaurant opens and the process ends.

For every n, prove that this process must terminate and determine the maximum
number of euros that the Jury can collect by cunningly choosing the initial order
and the sequence of moves.

4. Let n ≥ 3 be an integer. Several non-overlapping dominoes are placed on an n× n
board. The value of a row or column is the number of dominoes that cover at least
one cell of that row or column. A domino configuration is called balanced if there
exists some k ≥ 1 such that every row and column has value k.
Prove that a balanced configuration exists for every n ≥ 3 and find the minimum
number of dominoes needed in such a configuration.

5. Let Γ be the circumcircle of triangle ABC. A circle Ω is tangent to the line segment
AB and is tangent to Γ at a point lying on the same side of the line AB as C. The
angle bisector of ∠BCA intersects Ω at two different points P and Q. Prove that
∠ABP = ∠QBC.

6. Fix a real number 0 < t < 1
2 .

(a) Prove that there exists a positive integer n such that for every set S of
n positive integers, the following holds: there exist distinct x, y ∈ S and
nonnegative integer m ≥ 0 such that |x−my| ≤ ty.

(b) Determine whether there exists an infinite set S of positive integers such that
the following holds: for any distinct x, y ∈ S and positive integer m > 0, we
have |x−my| > ty.
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§1 Solutions to Day 1
§1.1 EGMO 2018/1, proposed by Velina Ivanova (BGR)
Available online at https://aops.com/community/p10185390.

Problem statement

Let ABC be a triangle with CA = CB and ∠ACB = 120◦, and let M be the
midpoint of AB. Let P be a variable point of the circumcircle of ABC, and let Q
be the point on the segment CP such that QP = 2QC. It is given that the line
through P and perpendicular to AB intersects the line MQ at a unique point N .
Prove that there exists a fixed circle such that N lies on this circle for all possible
positions of P .

Since ~N = 3 ~Q− 2 ~M , it suffices to show Q moves on a fixed circle. That fixed circle is
the image of (CAB) under a homothety at C with ratio 1/3, so we are done.

C

A B
M

P

Q N

Remark. Note that points A and B are superfluous, and the choice of constant 2 or the
definition of M is also arbitrary (only the fact that CM ‖ PN matters). Moreover, the
condition ∠ACB = 120◦ is never used either.

As a result, I did not find this problem very inspiring.
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§1.2 EGMO 2018/2, proposed by Mihail Baluna (ROM)
Available online at https://aops.com/community/p10185417.

Problem statement

Consider the set
A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be
written as the product of f(x) elements of A (not necessarily distinct). Prove that
there are infinitely many pairs of integers x ≥ 2 and y ≥ 2 for which

f(xy) < f(x) + f(y).

One of many constructions: let n = 2e + 1 for e ≡ 5 (mod 10) and let x = 11, y = n/11
be our two integers.

We prove two lemmas:

Claim — For any m ≥ 2 we have f(m) ≥ dlog2me.

Proof. This is obvious.

It follows that f(n) = e+ 1, since n = n
n−1 · 2e.

Claim — f(11) = 5.

Proof. We have 11 = 33
32 · 4

3 · 23. So it suffices to prove f(11) > 4.
Note that a decomposition of 11 must contain a fraction at most 11

10 = 1.1. But
23 · 1.1 = 8.8 < 11, contradiction.

To finish, note that

f(11) + f(n/11) ≥ 5 + log2(n/11) = 1 + log2(16n/11) > 1 + e = 1 + f(n).

Remark. Most solutions seem to involve picking n such that f(n) is easy to compute.
Indeed, it’s hard to get nontrivial lower bounds other than the log, and even harder to
actually come up with complicated constructions. It might be said the key to this problem
is doing as little number theory as possible.

4

http://web.evanchen.cc
https://aops.com/community/p10185417


EGMO 2018 Solution Notes web.evanchen.cc, updated 22 September 2024

§1.3 EGMO 2018/3, proposed by Hungary
Available online at https://aops.com/community/p10185368.

Problem statement

The n contestants of EGMO are named C1, C2, . . . , Cn. After the competition, they
queue in front of the restaurant according to the following rules.

• The Jury chooses the initial order of the contestants in the queue.

• Every minute, the Jury chooses an integer i with 1 ≤ i ≤ n.
– If contestant Ci has at least i other contestants in front of her, she pays one

euro to the Jury and moves forward in the queue by exactly i positions.
– If contestant Ci has fewer than i other contestants in front of her, the

restaurant opens and the process ends.

For every n, prove that this process must terminate and determine the maximum
number of euros that the Jury can collect by cunningly choosing the initial order
and the sequence of moves.

The maximum money is 1 + 3 + 7 + · · ·+ (2n−1 − 1) = 2n − n− 1, which is finite.
Call the 1-euro process a jump, and let xi denote the number of times that Ci jumps.

Note that:

• Whenever Ci jumps it must jump over some Cj with j > i.

• Contestant Ci can jump over a Cj with j > i at most 1 + xj times.

Now, we have xn = 0 and in general,

xn−1 ≤ 1 + xn ≤ 1

xn−2 ≤ (1 + xn−1) + (1 + xn−2) ≤ 3

xn−3 ≤ (1 + xn−1) + (1 + xn−2) + (1 + xn−3) ≤ 7

and so on, which gives the bound.
The construction is inductive; here is the example for n = 3, with the food towards

the right:
C1 C2 C3

C2 C1 C3

C2 C3 C1

C3 C1 C2

C3 C2 C1

In general, we can start the contestants in reverse order, apply inductive hypothesis to
C1 through Cn−1 to flip their order, then have C1, C2, . . . , Cn−1 jump over Cn, then
repeat. This gives a construction with value a1 = 0 and an = 2an−1 + (n− 1) which is
the same as the bound.
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§2 Solutions to Day 2
§2.1 EGMO 2018/4, proposed by Merlijn Staps (NLD)
Available online at https://aops.com/community/p10191585.

Problem statement

Let n ≥ 3 be an integer. Several non-overlapping dominoes are placed on an n× n
board. The value of a row or column is the number of dominoes that cover at least
one cell of that row or column. A domino configuration is called balanced if there
exists some k ≥ 1 such that every row and column has value k.

Prove that a balanced configuration exists for every n ≥ 3 and find the minimum
number of dominoes needed in such a configuration.

The answer is 2n/3 when n ≡ 0 (mod 3), and 2n otherwise.

¶ Proof this is best possible. To prove these are best possible, assume there are d
dominoes.

Claim — In any balanced configuration, we always have k · 2n = 3d.

Proof. Consider counting the number of ordered pairs

(row or column,domino touching at least one cell in that row or column).

On the one hand, this is equal to k · 2n, because there are 2n choices for the row and
column, and by the balanced hypothesis, there are k dominoes for that row or column.

On the other hand, it must be equal to 3d, because for each domino there are either
one column and two rows it touches, or two columns and one row.

Hence the result.

Written another way, we have
d = 2n · k

3
.

Since k ≥ 1, the first few possible values of d are 2n/3, 4n/3, 2n, . . . . So we get a lower
bound by taking the first integer in this sequence.

¶ Constructions. When n ≡ 0 (mod 3), one takes block-diagonal copies of the following
3× 3 square with k = 1. A A

B
B

 .

On the other hand, we give below construction for 4 ≤ n ≤ 7 which have k = 3 and
2n dominoes. By taking block-diagonal copies of these, we obtain a k = 3 construction
using 2n dominoes for any value of n ≥ 4.

A A B C
D D B C
W X Y Y
W X Z Z



A A B B C
H X C
H X D
G Y Y D
G F F E E
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A A B C
D D B C

W W Y Z
X X Y Z

P Q R R
P Q S S





A A B B C
W W X C

P X D
H P D
H Z Q Q
G Z Y Y
G F F E E


Remark. Most of the difficulty of the problem is the construction for n ∈ {5, 7}.

7

http://web.evanchen.cc


EGMO 2018 Solution Notes web.evanchen.cc, updated 22 September 2024

§2.2 EGMO 2018/5, proposed by Dominika Regiec (POL)
Available online at https://aops.com/community/p10191590.

Problem statement

Let Γ be the circumcircle of triangle ABC. A circle Ω is tangent to the line segment
AB and is tangent to Γ at a point lying on the same side of the line AB as C. The
angle bisector of ∠BCA intersects Ω at two different points P and Q. Prove that
∠ABP = ∠QBC.

If we let M denote the midpoint of arc ÂB then the inversion at M with radius MA = MB
fixes Ω, so it swaps P and Q, thus

]MPB = ]QBM.

A B

C

T

M

S

P

Q

But

]MPB = ]MCB + ]CBP

]QBM = ]ABM + ]QBA

implying the desired isogonality, since ]ABM = ]ACM = ]MCB.
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§2.3 EGMO 2018/6, proposed by Merlijn Staps (NLD)
Available online at https://aops.com/community/p10191603.

Problem statement

Fix a real number 0 < t < 1
2 .

(a) Prove that there exists a positive integer n such that for every set S of n positive
integers, the following holds: there exist distinct x, y ∈ S and nonnegative
integer m ≥ 0 such that |x−my| ≤ ty.

(b) Determine whether there exists an infinite set S of positive integers such that
the following holds: for any distinct x, y ∈ S and positive integer m > 0, we
have |x−my| > ty.

¶ Solution to (a). Assume not. Let S = {s1 < · · · < sn}. Consider

1 >
s1
s2

>
s1
s3

> · · · > s1
sn

> t.

Note that two of the fractions above are within a factor of t1/(n−1) of each other; taking
n large enough so that t1/(n−1) ≥ 1− t gives the conclusion.

¶ Solution to (b). Yes, such a set S exists.
To construct it, we employ a greedy algorithm. Let N be a large integer such that

t < 1/2− 1/N . We define S = {s1 < s2 < . . . } inductively as follows.

• First, let s1 be any prime number exceeding N .

• Then, given s1, . . . , sk, we let sk+1 equal a prime number which is greater than
2sk, and is congruent to si−1

2 (mod si) for i = 1, . . . , k. This is possible by Chinese
remainder theorem and Dirichlet theorem.

By construction, this works: if i < j then si/sj < 1/2 while sj/si has fractional part
within s−1

i of 1/2.
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