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This is a compilation of solutions for the 2016 EGMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let n be an odd positive integer, and let x1, x2, . . . , xn be nonnegative real numbers.

Show that
min(x2i + x2i+1) ≤ max(2xjxj+1)

where 1 ≤ i, j ≤ n and xn+1 = x1.

2. Let ABCD be a cyclic quadrilateral, and let diagonals AC and BD intersect at X.
Let C1, D1 and M be the midpoints of segments CX, DX and CD, respectively.
Lines AD1 and BC1 intersect at Y , and line MY intersects diagonals AC and BD
at different points E and F , respectively. Prove that line XY is tangent to the
circle through E, F and X.

3. Let m be a positive integer. Consider a 4m× 4m array of square unit cells. Two
different cells are related to each other if they are in either the same row or in the
same column. No cell is related to itself. Some cells are colored blue, such that
every cell is related to at least two blue cells. Determine the minimum number of
blue cells.

4. Two circles ω1 and ω2, of equal radius intersect at different points X1 and X2.
Consider a circle ω externally tangent to ω1 at T1 and internally tangent to ω2 at
point T2. Prove that lines X1T1 and X2T2 intersect at a point lying on ω.

5. Let k and n be integers such that k ≥ 2 and k ≤ n ≤ 2k − 1. Place rectangular
tiles, each of size 1 × k or k × 1 on a n × n chessboard so that each tile covers
exactly k cells and no two tiles overlap. Do this until no further tile can be placed
in this way. For each such k and n, determine the minimum number of tiles that
such an arrangement may contain.

6. Let S be the set of all positive integers n such that n4 has a divisor in the range
n2 + 1, n2 + 2, . . . , n2 + 2n. Prove that there are infinitely many elements of S of
each of the forms 7m, 7m+1, 7m+2, 7m+5, 7m+6 and no elements of S of the
form 7m+ 3 and 7m+ 4, where m is an integer.
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§1 Solutions to Day 1
§1.1 EGMO 2016/1, proposed by Netherlands
Available online at https://aops.com/community/p6171538.

Problem statement

Let n be an odd positive integer, and let x1, x2, . . . , xn be nonnegative real numbers.
Show that

min(x2i + x2i+1) ≤ max(2xjxj+1)

where 1 ≤ i, j ≤ n and xn+1 = x1.

It suffices to exhibit a single pair (i, j) where

x2i + x2i+1 ≤ 2xjxj+1.

Since n is odd we can find three adjacent xk’s, call them a, b, and c (with b in middle)
such that a ≥ b ≥ c. Then indeed

2ab ≥ b2 + c2

so we’re done.

Remark. When n is even, counterexamples to the problem statement alternate up and
down, such as (1, 100, 1, 100, 1, 100, . . . ). This provides a reason why one should consider
a ≥ b ≥ c to exploit the parity of n.
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§1.2 EGMO 2016/2, proposed by Belarus
Available online at https://aops.com/community/p6171514.

Problem statement

Let ABCD be a cyclic quadrilateral, and let diagonals AC and BD intersect at X.
Let C1, D1 and M be the midpoints of segments CX, DX and CD, respectively.
Lines AD1 and BC1 intersect at Y , and line MY intersects diagonals AC and BD
at different points E and F , respectively. Prove that line XY is tangent to the circle
through E, F and X.

We present two approaches.

¶ First approach through isogonality lemma. Note ABC1D1 is cyclic. By the “isogo-
nality lemma” applied to 4Y C1D1, it follows that Y X and YM are isogonal with respect
to 4Y C1D1. Then

∠EXY = ∠XC1Y + ∠C1Y X = ∠AD1X + ∠MYA = ∠Y FX

and we’re done (angles are directed).

Remark. Note that the points C and D can be more or less deleted immediately. The
“isogonality lemma” people has mentioned has appeared in other places too. In addition
to the Taiwan TST 2014 round 2 problem 6, it also shows itself in ELMO 2012/5, BrMO2
2013/2, SL 2009 G4, SL 2012 G2.

¶ Solution with complex numbers, by Sanjana Das. Quadrilateral ABC1D1 is also
cyclic (]AC1D1 = ]ACD = ]ABD1). We want ]Y XE = ]XFE, or

](XY,AC) = ](BD,MY ).

Now use complex numbers with unit circle (ABC1D1) (using c and d to refer to C1

and D1 for berevity).
We want to check that (x−y)(m−y)

(a−c)(b−d) is real. First, if Z = AB ∩ C1D1, then XY ⊥ OZ

where O is the circumcenter of (ABC1D1) by Brokard’s Theorem, so we want to show

(ab(c+ d)− cd(a+ b)) · (y −m)

(a− c)(b− d)(ab− cd)
∈ iR.

Now we have m = c+ d− x, which means

y −m = x+ y − c− d

=
ac(b+ d)− bd(a+ c)

ac− bd
+

ad(b+ c)− bc(a+ d)

ad− bc
− c− d

=
ab(2acd+ 2bcd+ c3 + d3 − ac2 − ad2 − bc2 − bd2 − c2d− cd2)

(ac− bd)(ad− bc)

= −ab(a+ b− c− d)(c− d)2

(ac− bd)(ad− bc)
.
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This means our final expression is

−ab(ab(c+ d)− cd(a+ b))(a+ b− c− d)(c− d)2

(ac− bd)(ad− bc)(a− c)(b− d)(ab− cd)
,

which is visibly the negative of its conjugate and is therefore imaginary.
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§1.3 EGMO 2016/3, proposed by Mexico
Available online at https://aops.com/community/p6171553.

Problem statement

Let m be a positive integer. Consider a 4m × 4m array of square unit cells. Two
different cells are related to each other if they are in either the same row or in the
same column. No cell is related to itself. Some cells are colored blue, such that every
cell is related to at least two blue cells. Determine the minimum number of blue
cells.

We’ll prove that the answer is at least 6m. The construction is to take diagonal copies of
the matrix 

1 1 1
1
1
1

 .

We present two proofs this is optimal.

¶ Bipartite graph (Kevin Sun). Consider the bipartite subgraph

H ⊆ K4m,4m

with vertices being rows/columns, and edges corresponding blue squares.
Assume for contradiction the are fewer than 6m edges. Then there are at least

|V (H)| − |E(H)| = 8m − 6m = 2m connected components in H, so some connected
component has at most three vertices.

We consider two cases:

• Note that if there are any isolated vertices v (connected components with no edges),
then it follows H needs at least 8m edges, because every vertex on the opposite
shore from v has blue-degree at least 2.

• Thus assume no isolated vertices exist. On the other hand, every blue edge is
incident to at least two more blue edges, so no connected component can have
fewer than three edges. As the connected components are bipartite, it follows each
connected component has at least four vertices, which is impossible.

¶ Brute force (mine). We prove that for a general n× n board, a good configuration
has at least 3

2n blue squares. Consider any minimal good configuration with k squares,
and assume k ≤ 3

2n (and we will prove k ≥ 3
2n). We observe that no column and row

can be empty in a good configuration with k ≤ 2n squares.
Now, assume there are xi columns with exactly i blue squares, and ai rows with exactly
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i blue squares (for i = 1, . . . , n.) Permute the board to arrive at the following:

x1 cols x2 cols x3 + x4 + · · ·+ xn cols
a1 rows 0 0 a1
a2 rows 0 P Q

a3 + · · ·+ an x1 R S
rows

In each subgrid, the letter denotes the number of blue squares in that region. Consequently,
we have P +Q = 2a2, P +R = 2x2, and a1 +Q+ S = 3x3 + 4x4 + · · ·+ nxn. We also
know that n =

∑
ai =

∑
xi and k =

∑
iai =

∑
ixi.

Without loss of generality we assume that a1 ≤ x1. Then, it would suffice to prove
that ∑

iai ≥
3

2

∑
ai ⇐⇒ a1 ≤ a2 + 3a3 + 5a4 + . . . .

We observe that

0 ≤ S = 3x3 + · · ·+ nxn − a1 −Q

= (a1 + 2a2 + · · ·+ nan)− (x1 + 2x2)− (a1 −Q)

=⇒ x1 ≤ (3a3 + 4a4 + · · ·+ nan)− (Q− 2a2 + 2x2)

= (3a3 + 4a4 + · · ·+ nan)−R

≤ 3a3 + 4a4 + · · ·+ nan

≤ a2 + 3a3 + 5a4 + · · ·+ (2n− 3)an.

Since we assumed a1 ≤ x1, we are done.
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§2 Solutions to Day 2
§2.1 EGMO 2016/4, proposed by Charles Leytem (LUX)
Available online at https://aops.com/community/p6177803.

Problem statement

Two circles ω1 and ω2, of equal radius intersect at different points X1 and X2.
Consider a circle ω externally tangent to ω1 at T1 and internally tangent to ω2 at
point T2. Prove that lines X1T1 and X2T2 intersect at a point lying on ω.

We present two solutions, one by homothety and another by inversion.

¶ First solution (homothety). Consider the composition of homotheties

ω1
T1−→ ω

T2−→ ω2.

This is a negative homothety, and since ω1 and ω2 have equal radius, it follows that the
composition is just reflection about the midpoint of X1X2. In particular, it sends X1 to
X2, and thus X1T1 ∩X2T2 is just the image of X1 under the first homothety.

¶ Second solution (inversion). Invert around X1. Then we have the following:

• ω∗
1 and ω∗

2 are lines intersecting at X∗
2 , and X1 is a point on the external angle

bisector of the two lines.

• The circle ω∗ becomes tangent to the two lines (in a region adjacent to X1).

• Let P = T ∗
1X1 ∩ ω∗. Then one wishes to show X1X

∗
2PT ∗

2 are concyclic.

To show this, notice that

]T ∗
2X

∗
2X1 = ]T ∗

1 T
∗
2X

∗
2 = ]T ∗

2PT ∗
1 = ]T ∗

2PX1.
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§2.2 EGMO 2016/5, proposed by Netherlands
Available online at https://aops.com/community/p6177809.

Problem statement

Let k and n be integers such that k ≥ 2 and k ≤ n ≤ 2k− 1. Place rectangular tiles,
each of size 1 × k or k × 1 on a n × n chessboard so that each tile covers exactly
k cells and no two tiles overlap. Do this until no further tile can be placed in this
way. For each such k and n, determine the minimum number of tiles that such an
arrangement may contain.

The answer is {
n n = k or n = 2k − 1

2(n− k + 1) k < n < 2k − 1.

Here are constructions.

• For n = k it’s trivial.

• For k < n < 2k − 1, observe that one can construct it when n = k + 1 by simply
filling in the perimeter of the (k + 1) × (k + 1) square with four dominoes, then
one can inductively obtain the next values n = k + 2, k + 3, . . . by adding a new
domino to each row and column, hence increasing the count by 2. An example with
(k, n) = (5, 8) is shown below.

w w w w w x a b
y x a b
y x a b
y x a b
y x a b
y z z z z z
c c c c c
d d d d d


• For n = 2k−1 one places a domino in each column, alternating between upper-most

possible and lower-most possible. An example with (k, n) = (3, 5) is shown below.
a c e
a c e
a b c d e

b d
b d


Now we now prove this is optimal.
Call a row (resp column) bare if it contains no horizontal (resp vertical) domino

contained completely inside it. The main observation is that:

Claim — The bare columns are consecutive, as are the bare rows.

Proof. Consider a vertical domino D (say) in some column C, and assume it is in the
left half of the board. Then the column to the left of C must also contain a domino,
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otherwise we could add the domino exactly to the left of D since there is not enough
space to fit a horizontal domino to D’s left.

Inductively, then, every column left of C is not bare. Similarly, if C had been on the
right half of the board, then all columns to the right of C are not bare.

To finish, we consider two cases.

• If there are no bare columns, then we need at least n dominoes, since each column
contains a domino.
Similarly, if there are no bare rows, we also need at least n dominoes.

• In the case there exist at least one bare row or bare column, note that given k
(consecutive) bare columns, then intersecting them with a bare row gives a place
where we can add an additional domino, contradiction. So there are at most k bare
columns, and hence at least n − (k − 1) = n − k + 1 vertical dominoes (one per
non-bare column).
Similarly, there are at least n− k + 1 horizontal dominoes. So there are at least
2(n− k + 1) dominoes total.

This shows one always needs at least min(n, 2(n− k + 1)) dominoes. This resolves every
case except k = n, (in which case the bound is true but not achievable). However, the
case k = n is trivial — just note that all the dominoes must have the same orientation
when k = n, so we are necessarily in the first case.
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§2.3 EGMO 2016/6, proposed by Netherlands
Available online at https://aops.com/community/p6177824.

Problem statement

Let S be the set of all positive integers n such that n4 has a divisor in the range
n2 + 1, n2 + 2, . . . , n2 + 2n. Prove that there are infinitely many elements of S of
each of the forms 7m, 7m+ 1, 7m+ 2, 7m+ 5, 7m+ 6 and no elements of S of the
form 7m+ 3 and 7m+ 4, where m is an integer.

Start from the implication

n2 + k | n4 ⇐⇒ n2 + k | k2.

Since 1 ≤ k ≤ 2n, in fact the quotient k2

n2+k
can only take values from 1 to 3. In other

words, S is the set of integers n for which at least one equation

n2 + k = k2

2(n2 + k) = k2

3(n2 + k) = k2

has at least one solution 1 ≤ k ≤ 2n.
The first equation has no solutions with k ≥ 1 since we can put (k − 1)2 < n2 < k2.

The other two are Pell equations, and one can check that n2 ≡ 2 (mod 7) has no solutions
at all for k (mod 7) in either case. The assertion about infinitely many solutions then
follows by using the Pell recursion, and taking modulo 7.
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