
EGMO 2015 Solution Notes
Evan Chen《陳誼廷》
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This is a compilation of solutions for the 2015 EGMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let 4ABC be an acute-angled triangle, and let D be the foot of the altitude from

C. The angle bisector of ∠ABC intersects CD at E and meets the circumcircle ω
of 4ADE again at F . If ∠ADF = 45◦, show that CF is tangent to ω.

2. A domino is a 2×1 or 1×2 tile. Determine in how many ways exactly n2 dominoes
can be placed without overlapping on a 2n × 2n chessboard so that every 2 × 2
square contains at least two uncovered unit squares which lie in the same row or
column.

3. Let n,m be integers greater than 1, and let a1, a2, . . . , am be positive integers not
greater than nm. Prove that there exist integers b1, b2, . . . , bm not greater than n
such that

gcd(a1 + b1, a2 + b2, . . . , am + bm) < n.

4. Determine whether or not there exists an infinite sequence a1, a2, . . . of positive
integers satisfying

an+2 = an+1 +
√
an+1 + an

for every positive integer n.

5. Let m,n be positive integers with m > 1. Anastasia partitions the integers
1, 2, . . . , 2m into m pairs. Boris then chooses one integer from each pair and finds
the sum of these chosen integers. Prove that Anastasia can select the pairs so that
Boris cannot make his sum equal to n.

6. Let H be the orthocenter and G be the centroid of acute-angled triangle ABC
with AB 6= AC. The line AG intersects the circumcircle of ABC at A and P . Let
P ′ be the reflection of P in the line BC. Prove that ∠CAB = 60 if and only if
HG = GP ′.
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§1 Solutions to Day 1
§1.1 EGMO 2015/1, proposed by Luxembourg
Available online at https://aops.com/community/p4725314.

Problem statement

Let 4ABC be an acute-angled triangle, and let D be the foot of the altitude from
C. The angle bisector of ∠ABC intersects CD at E and meets the circumcircle ω
of 4ADE again at F . If ∠ADF = 45◦, show that CF is tangent to ω.

AB

F

D

K

C

E

Let BC meet the circle with diameter AB at K. By the conditions of the problem, we
have FK = FE = FA. Thus E is the incenter of 4KBA.

By angle chasing, we can now show that

∠KFE = 90◦ − 1

2
∠KEF = ∠BCD,

so KCFE is cyclic and thus

∠CKE = 135◦ =⇒ ∠CFE = 45◦

as needed.

Remark. One can also realize CKEF is cyclic by noting

BE ·BF = BD ·BA = BK ·BC.

Remark. Another approach is to use barycentric coordinates on 4ABK. Letting a = BK,
b = AK, c = AB we have E = (a : b : c), D = (s− b : s− a : 0), and

F = (a(a+ c) : −b2 : c(a+ c)) = (a(a+ c) : a2 − c2 : c(a+ c)) = (a : a− c : c).
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§1.2 EGMO 2015/2, proposed by Turkey
Available online at https://aops.com/community/p4725316.

Problem statement

A domino is a 2× 1 or 1× 2 tile. Determine in how many ways exactly n2 dominoes
can be placed without overlapping on a 2n × 2n chessboard so that every 2 × 2
square contains at least two uncovered unit squares which lie in the same row or
column.

Generalizing the problem slightly, the answer is
(
m+n
n

)2 for a 2m× 2n rectangle,
The proof is the following nice bijection between valid domino tilings and pairs of

lattice paths joining opposite corners of the grid, that travel along the borders of the
obvious 2× 2 squares.

Remark. The main reason I was able to make the correct guess of the answer was because I
generalized the problem to rectangular boards rather than to square boards. Three possible
motivations:

• The problem felt very recursive, in that smaller instances of the problem would appear
as sub-cases. In particular, my computation for (m,n) = (2, 2) requires (m,n) = (2, 1)
as a subcase anyways.

• The problem makes it otherwise too difficult to examine small cases.

• (m,n) = (2, 1) gives another perfect square 32 = 9 so there is good reason to believe
that something is going on here too.

Once you have the guess down, it becomes more clear that any recursive solution is likely
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to fail (due to the square), and one needs to find a “combinatorial” interpretation for the
problem. The two paths as shown is a natural one, and with a little work one gets the
bijection above.
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§1.3 EGMO 2015/3, proposed by United States of America
Available online at https://aops.com/community/p4725324.

Problem statement

Let n,m be integers greater than 1, and let a1, a2, . . . , am be positive integers not
greater than nm. Prove that there exist integers b1, b2, . . . , bm not greater than n
such that

gcd(a1 + b1, a2 + b2, . . . , am + bm) < n.

In fact, we will prove that it’s possible to choose bi ∈ {0, 1}!
Assume not, and all GCD’s are at least n. Consider the choices:

• b1 = · · · = bm = 0.

• b1 = b2 = · · · = bk−1 = bk+1 = bm = 0 and bk = 1, for some 2 ≤ k ≤ m.

This generates m gcd’s, say g1, . . . , gm. Each divides a1. Moreover, they are pairwise
coprime, s

a1 ≥
∏
i

gi = n(n+ 1) · · ·+ (n+m− 1) > nm

which is impossible.
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§2 Solutions to Day 2
§2.1 EGMO 2015/4, proposed by Japan
Available online at https://aops.com/community/p4728593.

Problem statement

Determine whether or not there exists an infinite sequence a1, a2, . . . of positive
integers satisfying

an+2 = an+1 +
√
an+1 + an

for every positive integer n.

In fact, we will show the following stronger result: the largest N for which one can find
(a1, . . . , aN ) satisfying (for all 1 ≤ n ≤ N − 2) is actually N = 5. This largest N is
obtained for example by (a1, a2, a3, a4, a5) = (477, 7, 29, 35, 43).

Remark. Basically, the idea is to choose a3 first; then as long as the number

s :=
√
a3 + a4 =

√
2a3 +

√
a2 + a3

is as integer, the rest of the sequence can be chosen to have integer values. Unfortunately,
a1 may turn out to be negative in this situation. But if one experiments with numbers, it
should be possible to ensure a2 < a3, and after this no further obstructions arise.

For example, if one makes the arbitrary starting choice s = 10, then choosing a3 = 46
gives the nice choice a2 = 18, thus a1 = 766. (We picked this number so that 2a3 +

√
a3

was just under 100.) Meanwhile, moving forward, a4 = 46 +
√
46 + 18 = 54 and a5 =

54 +
√
46 + 54 = 64. Hence (a1, a2, a3, a4, a5) = (766, 18, 46, 54, 64) is another example.

Let
xn := an+1 − an =

√
an + an−1.

We will rewrite everything in terms of the (xn). Since the (an) are strictly increasing for
n ≥ 2 so are the (xn) when n ≥ 3. For n ≥ 2 observe that

x2n+1 − x2n = an+1 − an−1 = (an+1 − an) + (an − an−1) = xn + xn−1

thus
xn+1 − xn =

xn + xn−1

xn+1 + xn
.

But suppose n ≥ 4. Then since the xn are supposed to be strictly increasing, the
right-hand side is < 1. Yet xn+1 − xn ≥ 1 as well, which is a contradiction.

Thus it is impossible to have six terms in the sequence.

7

http://web.evanchen.cc
https://aops.com/community/p4728593


EGMO 2015 Solution Notes web.evanchen.cc, updated 30 September 2024

§2.2 EGMO 2015/5, proposed by Netherlands
Available online at https://aops.com/community/p4728599.

Problem statement

Let m,n be positive integers with m > 1. Anastasia partitions the integers
1, 2, . . . , 2m into m pairs. Boris then chooses one integer from each pair and finds
the sum of these chosen integers. Prove that Anastasia can select the pairs so that
Boris cannot make his sum equal to n.

Overall the idea is to try find a few constructions which eliminate most of the cases, then
clean out the last few ones leftover.

• If n /∈ [m2,m2 +m], then use the construction

1 3 . . . 2m− 3 2m− 1
2 4 . . . 2m− 2 2m

• If n 6≡ 1 + 2 + · · ·+m = 1
2m(m+ 1) (mod m), use the construction

1 2 . . . m− 1 m
m+ 1 m+ 2 . . . 2m− 1 2m

Henceforth, assume m ≥ 4 (smaller cases can be dispensed with by hand).

• Assume m is odd, and either n = m2 and n = m2 +m. Use the construction

1 2 . . . m− 1 m
m+ 2 m+ 3 . . . 2m m+ 1

.

The possible values of this modulo m+ 1 are

1
2m(m+ 1) + {0, 1} ≡ 1

2(m+ 1) + {0, 1} (mod m+ 1)

since m is odd. But m2 and m2 +m leave residues 1 and 2 modulo m, done.

• Assume m is even (so m + 1 is odd), and n = m2 + 1
2m ≡ 1

2 (mod m + 1). The
same pairing as before has possible residues

1
2m(m+ 1) + {0, 1} ≡ {0, 1} (mod m+ 1).

This completes the proof.
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§2.3 EGMO 2015/6, proposed by Ukraine
Available online at https://aops.com/community/p4728597.

Problem statement

Let H be the orthocenter and G be the centroid of acute-angled triangle ABC with
AB 6= AC. The line AG intersects the circumcircle of ABC at A and P . Let P ′ be
the reflection of P in the line BC. Prove that ∠CAB = 60 if and only if HG = GP ′.

The following complex numbers solution was given by Stefan Tudose. First

pa(b+ c)− bc(p+ a)

pa− bc
=

b+ c

2
=⇒ p = − 2bc− ab− ac

bc(2a− b− c)
.

Then
p′ = b+ c− bcp =

ab+ ac− b2 − c2

2a− b− c
.

Now let D be the midpoint of HP ′. Then

d =
h+ p′

2
=

a2 − b2 − c2 + ab+ ac− bc

2a− b− c

h− p′ =
2(a2 − bc)

2a− b− c

g − d =
2b2 + 2c2 − a2 + bc− 2ab− 2ac

3(2a− b− c)

Then HG = GP ′ ⇐⇒ GD ⊥ HP ′ and we have

g − d

h− p′
=

2b2 + 2c2 − a2 + bc− 2ab− 2ac

6(a2 − bc)

which we would like to be pure imaginary. However the negative conjugate equals(
g − d

h− p′

)
= −2a2c2 + 2a2b2 − b2c2 + a2bc− 2abc2 − 2ab2c

6bc(bc− a2)
.

Expanding, the condition we have becomes

b3c+ bc3 + b2c2 = a2bc+ a2c2 + a2b2 ⇐⇒ (b2 + bc+ c2)(a2 − bc) = 0.

Now b2 + bc+ c2 = 0 ⇐⇒ ∠A = 60◦ as desired.

Remark. One can also proceed by |g−h| = |g− p′| which is longer but ultimately the same
calculation.

Remark. The condition AB 6= AC is not cosmetic; it cannot be dropped from the problem
condition. This is reflected in the presence of a2 − bc factor.
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