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This is a compilation of solutions for the 2014 EGMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 EGMO 2014/1, proposed by United Kingdom . . . . . . . . . . . . . . . . 3
1.2 EGMO 2014/2, proposed by Ukraine . . . . . . . . . . . . . . . . . . . . . 5
1.3 EGMO 2014/3, proposed by Japan . . . . . . . . . . . . . . . . . . . . . . 8

2 Solutions to Day 2 9
2.1 EGMO 2014/4, proposed by Netherlands . . . . . . . . . . . . . . . . . . 9
2.2 EGMO 2014/5, proposed by Romania . . . . . . . . . . . . . . . . . . . . 10
2.3 EGMO 2014/6, proposed by Netherlands . . . . . . . . . . . . . . . . . . 11

1



EGMO 2014 Solution Notes web.evanchen.cc, updated 22 September 2024

§0 Problems
1. Determine all real constants t such that whenever a, b and c are the lengths of

sides of a triangle, then so are a2 + bct, b2 + cat, c2 + abt.

2. Let D and E be points in the interiors of sides AB and AC, respectively, of a
triangle ABC, such that DB = BC = CE. Let the lines CD and BE meet at F .
Prove that the incenter I of triangle ABC, the orthocenter H of triangle DEF and
the midpoint M of the arc BAC of the circumcircle of triangle ABC are collinear.

3. We denote the number of positive divisors of a positive integer m by d(m) and the
number of distinct prime divisors of m by ω(m). Let k be a positive integer. Prove
that there exist infinitely many positive integers n such that ω(n) = k and d(n)
does not divide d(a2 + b2) for any positive integers a, b satisfying a+ b = n.

4. Determine all positive integers n ≥ 2 for which there exist integers x1, x2, . . . , xn−1

satisfying the condition that if 0 < i < n, 0 < j < n, i 6= j and n divides 2i + j,
then xi < xj .

5. Let n be a positive integer. We have n boxes where each box contains a non-negative
number of pebbles. In each move we are allowed to take two pebbles from a box
we choose, throw away one of the pebbles and put the other pebble in another
box we choose. An initial configuration of pebbles is called solvable if it is possible
to reach a configuration with no empty box, in a finite (possibly zero) number of
moves. Determine all initial configurations of pebbles which are not solvable, but
become solvable when an additional pebble is added to a box, no matter which box
is chosen.

6. Solve over R the functional equation

f(y2 + 2xf(y) + f(x)2) = (y + f(x))(x+ f(y)).
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§1 Solutions to Day 1
§1.1 EGMO 2014/1, proposed by United Kingdom
Available online at https://aops.com/community/p3459747.

Problem statement

Determine all real constants t such that whenever a, b and c are the lengths of sides
of a triangle, then so are a2 + bct, b2 + cat, c2 + abt.

¶ Answer. We will show the answer is exactly

2/3 ≤ t ≤ 2.

¶ Proof. Apply the substitution a = y+ z, b = z+x, c = x+y. We need the inequality

a2 + bct < b2 + cat+ c2 + abt

(y + z)2 + (x+ y)(x+ z)t < (x+ y)2 + (x+ z)2 + (y + z)(2x+ y + z)t

⇐⇒ [x2 − (xy + xz + yz + y2 + z2)]t < 2x2 + 2xy + 2xz − 2yz

to be true for all (x, y, z) ∈ R3
>0 (checking only one inequality is enough by symmetry).

Writing this is a quadratic in x, we want

Q(x) := (2− t)x2 + (2 + t)(y + z)x+ ((y2 + yz + z2)t− 2yz) > 0.

Claim — Except when t = 2, the quadratic Q always has two real roots.

Proof. The discriminant is

D = [(2 + t)(y + z)]2 − 4(2− t)
(
(y2 + yz + z2)t− 2yz

)
=

(
(2 + t)2 − 4(2− t)t

)
(y2 + z2) +

(
2(2 + t)2 − 4(2− t)(t− 2)

)
yz

=
(
5t2 − 4t+ 4

)
(y2 + z2) +

(
6t2 − 8t+ 24

)
yz > 0

which means Q always has two real roots (aside for the single exceptional case t = 2, in
which Q is not a quadratic).

Now, we make a few closing observations.

• It is clear we need t ≤ 2, since a negative leading coefficient will cause the inequality
to fail for x � y, z.

• The case t = 2 obviously has Q > 0 always.

• For t < 2, as Q always has two real roots, the assertion is true if and only if all
coefficients of Q are nonnegative.
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• When t ≥ 2
3 , we have (2 + t)(y + z) > 0 obviously, and from

y2 + yz + z2

3
≥ yz

the constant coefficient is nonnegative as well. Thus when 2

3
≤ t ≤ 2 we indeed

have Q(x) > 0 for x, y, z > 0.

• If t < 2
3 , then by letting y = z fails the condition.
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§1.2 EGMO 2014/2, proposed by Ukraine
Available online at https://aops.com/community/p3459750.

Problem statement

Let D and E be points in the interiors of sides AB and AC, respectively, of a triangle
ABC, such that DB = BC = CE. Let the lines CD and BE meet at F . Prove
that the incenter I of triangle ABC, the orthocenter H of triangle DEF and the
midpoint M of the arc BAC of the circumcircle of triangle ABC are collinear.

¶ First solution (Cynthia Du). Let BI and CI meet the circumcircle again at MB,
MC . Observe that we have the spiral congruence

4MDB ∼ 4MEC

from ]MBD = ]MBA = ]MCA = ]MCE and BD = EC, BM = CM . That is, M
is the Miquel point of BDEC.

A

B C

I

D
E

MB

MC

M

T

S
F

H

Let T = ME ∩BI and S = MD ∩CI. First, since BI is the perpendicular bisector of
CD we have that

]DIT = ]CIT = ]CIB = 90◦ − 1

2
∠A = ]MCB = ]MED = ]TED

and so D, I, T , E is cyclic. Similarly S lies on this circle too. But ]SDE = ]EDM =
]MED = ]TED so in fact ST ‖ DE (isosceles trapezoid).

Then 4IST and 4HDE are homothetic, so IH, DS, and ET concur (at M).

¶ Second solution (Evan Chen). Observe that we have the spiral congruence

4MDB ∼ 4MEC

from ]MBD = ]MBA = ]MCA = ]MCE and BD = EC, BM = CM . That is, M
is the Miquel point of BDEC.
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Let X and Y be the midpoints of BD and CE. Then MX = MY by our congruence.
Consider now the circles with diameters BD and CE. We now claim that H, I, M all

lie on the radical axis of these circles. Note that I is the orthocenter of 4BFC and H
is the orthocenter of 4DEF , so this follows from the so-called Steiner line of BCDE
(perpendicular to Gauss line XY ). For M , we observe MX2 −XB2 = MY 2 − Y C2 thus
completing the proof.

¶ Third solution (homothety, official solution). Extend DH and EH to meet BI and
CI at D1 and E1. Note DD1 ⊥ BE, CI ⊥ BE, so DD1 ‖ CI. Similarly EE1 ‖ BI. So
HE1ID1.

A

B C

I

D E

F

H

D1E1

D2

E2

M

Angle chase to show that B, E1, F , C are cyclic – ∠DCE1 = ∠DCI is computable in
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terms of ABC and

∠E1BF = ∠E1BE = ∠E1EB = ∠HEF = ∠HDF = ∠HDC = ∠DCE1 = ∠FCE1.

Thus B, D1, F , C are also cyclic. So B, D1, E1, C are cyclic.
Extend BI and CI to meet the circumcircle again at D2 and E2. Direct computation

gives that ME2ID2 is also a parallelogram. We also get E1D1 is parallel to E2D2 (both
are antiparallel to BC through ∠BIC). So we have homothetic paralellograms and that
finishes the problem.
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§1.3 EGMO 2014/3, proposed by Japan
Available online at https://aops.com/community/p3459754.

Problem statement

We denote the number of positive divisors of a positive integer m by d(m) and the
number of distinct prime divisors of m by ω(m). Let k be a positive integer. Prove
that there exist infinitely many positive integers n such that ω(n) = k and d(n) does
not divide d(a2 + b2) for any positive integers a, b satisfying a+ b = n.

Let n = 2p−1t, where t ≡ 5 (mod 6), ω(t) = k− 1, and p � t is a sufficiently large prime.
Let a+ b = n and a2 + b2 = c. We claim that p - d(c), which solves the problem since
p | d(n).

First, note that 3 - a2 + b2, since 3 - n. Next, note that c < 2n2 < 5p−1 (since p � t)
so no exponent of an odd prime in c exceeds p− 2. Moreover, c < 23p−1.

So, it remains to check that ν2(c) /∈ {p− 1, 2p− 1}. On the one hand, if ν2(a) < ν2(b),
then ν2(a) = p− 1 and ν2(c) = 2ν2(a) = 2p− 2. On the other hand, if ν2(a) = ν2(b) then
ν2(a) ≤ p− 2, and ν2(c) = 2ν2(a) + 1 is odd and less than 2p− 1.

Remark. Personally, I find the condition to be artificial, but the construction is kind of fun.
I also think the scores on this problem during the real contest are low mostly because of

the difficulty of problem 2.
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§2 Solutions to Day 2
§2.1 EGMO 2014/4, proposed by Netherlands
Available online at https://aops.com/community/p3460731.

Problem statement

Determine all positive integers n ≥ 2 for which there exist integers x1, x2, . . . , xn−1

satisfying the condition that if 0 < i < n, 0 < j < n, i 6= j and n divides 2i + j,
then xi < xj .

The answer is n = 2k and n = 3 · 2k, for each k ≥ 0 (excluding n = 1).
We work with the set S = {1, 2, . . . , n−1} mod n of nonzero residues modulo n instead.

We define the relation ≺ on S to mean that 2i+ j ≡ 0 (mod n) and i 6= j, for i, j ∈ S.
Then the problem satisfies the conditions if and only if ≺ has no cycles, i.e. ≺ imposes a
partial order on S.

The existence of a cycle for ≺ is equivalent to some choice of t1 ∈ S and an integer
m ≥ 2 such that

t1 ≺ t2 ≺ · · · ≺ tm ≺ t1.

Unwinding the definition, this is equivalent to two conditions:

• We need ti 6≡ ti+1 (mod n) for i = 1, . . . ,m (where tm+1 = t1). This is equivalent
to

3 · 2i−1 · t1 ≡ 0 (mod n) (♥).

• For tm ≺ t1 to be true, we need

(−2)mt1 ≡ t1 (mod n) ⇐⇒ ((−2)m − 1) t1 ≡ 0 (mod n). (♠)

We now analyze three cases:

• Let n = 2k. Suppose for contradiction some cycle exists. Then (−2)m−1 is coprime
to n, so (♠) would imply t1 ≡ 0 (mod n), contradiction.

• Let n = 3 · 2k. Suppose for contradiction some cycle exists. If (♠) holds for some
m, then 2k | t1, so the only possibility is that t1 ≡ ±2k (mod n) and 3 | (−2)m − 1.
However, in that case (♥) is violated for i = 1, contradiction.

• Suppose n had an n has an odd divisor d | n and d ≥ 5. Then taking t1 = n/d and
m = ϕ(d), the equation (♠) is true. Moreover, (♥) is true because there is at least
one odd prime p with νp(n) > νp(3t1) = νp(3n/d) (since d ≥ 5 is odd). So indeed
it’s possible to construct a cycle.

Thus these are all the answers and the only answers.
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§2.2 EGMO 2014/5, proposed by Romania
Available online at https://aops.com/community/p3460733.

Problem statement

Let n be a positive integer. We have n boxes where each box contains a non-negative
number of pebbles. In each move we are allowed to take two pebbles from a box
we choose, throw away one of the pebbles and put the other pebble in another box
we choose. An initial configuration of pebbles is called solvable if it is possible to
reach a configuration with no empty box, in a finite (possibly zero) number of moves.
Determine all initial configurations of pebbles which are not solvable, but become
solvable when an additional pebble is added to a box, no matter which box is chosen.

The point of the problem is to characterize all the solvable configurations. We claim that
it is given by the following:

Claim — A configuration (a1, . . . , an) is solvable if and only if

n∑
1

⌈ai
2

⌉
≥ n.

Proof. The proof is by induction on the number of stones. If there are fewer than n stones
there is nothing to prove. Now assume there are at least n stones, and let S =

∑
dai/2e.

Then:

• If S < n, this remains true after any operation, so by induction the configuration
is not solvable.

• Suppose S ≥ n, and also that there is an empty box (else we are already done).
Then there must be some box with at least two stones. In that case, using those
two stones to fill the empty box does not change the value of S, but decreases the
total number of stones by one, as desired.

From here we may then extract the answer to the original problem: we require all ai
to be even and

∑
ai = 2n− 2.

Remark. It should be unsurprising that a criteria of this form exists, since (1) intuitively,
one loses nothing by filling empty boxes as soon as possible, and then ignoring boxes with
one pebble in them, (2) the set of configurations is a graded partially ordered set, so one
can inductively look at small cases.
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§2.3 EGMO 2014/6, proposed by Netherlands
Available online at https://aops.com/community/p3460735.

Problem statement

Solve over R the functional equation

f(y2 + 2xf(y) + f(x)2) = (y + f(x))(x+ f(y)).

A key motivation throughout the problem is that the left-hand side is asymmetric while
the right-hand side is symmetric. Thus any time we plug in two values for x and y we
will also plug in the opposite pair. Once f is injective this will basically kill the problem.

First, we prove the following.

Lemma
There is a unique z ∈ R such that f(z) = 0.

Proof. Clearly by putting y = −f(x) such z exists. Now, suppose f(u) = f(v) = 0.
Then:

• Plug (x, y) = (u, v) gives f(v2) = uv.

• Plug (x, y) = (v, u) gives f(u2) = uv.

• Plug (x, y) = (u, u) gives f(u2) = u2.

• Plug (x, y) = (v, v) gives f(v2) = v2.

Consequently u2 = uv = v2 which yields u = v.

Next let (x, y) = (z, 0) and (x, y) = (0, z) to get

f (2zf(0)) = f
(
z2 + f(0)2

)
= 0

=⇒ 2zf(0) = z2 + f(0)2 = z

=⇒ f(0) = z ∈
{
0,

1

2

}
.

We now set to prove:

Lemma
The function f is injective.

Proof. By putting (x, y) = (x, z) and (x, y) = (z, x) we get

f
(
f(x)2 + z2

)
= f

(
2zf(x) + x2

)
= x(z + f(x)).

Now suppose f(x1) = f(x2) but x1 6= x2. This can only happen if f(x1) = f(x2) = −z.
And now

f(xi)
2 + z2 = 2zf(xi) + x2i = z i = 1, 2.
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Solving, we have xi = ±1, z = 1
2 , (since z = 0 is not permissible). Thus we have “almost

injectivity”.
Now plug in (x, y) = (−1, 0) and (x, y) = (0,−1) in the original and equate in order

to obtain f(−3
4) = f(54), which contradicts the work above.

Finally we may use the symmetry trick in full to obtain

y2 + 2xf(y) + f(x)2 = x2 + 2yf(x) + f(y)2. (♥)

In particular, by setting y = 0 we obtain

f(x)2 = (z − x)2 .

Two easy cases remain:

• In the z = 0 case simply note that (♥) gives 2xf(y) = 2yf(x), so for x 6= 0 the
value f(x)/x is constant and hence f(x) ≡ ±x follows.

• In the z = 1
2 case (♥) becomes (2f(y) + 1)x = (2f(x) + 1) y and hence we’re done

again by the same reasoning.
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