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This is a compilation of solutions for the 2013 EGMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. The side BC of the triangle ABC is extended beyond C to D so that CD = BC.

The side CA is extended beyond A to E so that AE = 2CA. Prove that if
AD = BE then the triangle ABC is right-angled.

2. Determine all integers m for which the m ×m square can be dissected into five
rectangles, the side lengths of which are the integers 1, 2, . . . , 10 in some order.

3. Let n be a positive integer.
(a) Prove that there exists a set S of 6n positive integers such that the least

common multiple of any two is at most 32n2.
(b) Show that every set T of 6n positive integers contains two elements with least

common multiple exceeding 9n2.

4. Find all positive integers a and b for which there are three consecutive integers at
which the polynomial P (n) = 1

b (n
5 + a) takes integer values.

5. Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the sides
AC and BC, and it is internally tangent to the circle Ω at the point P . A line
parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q. Prove
that ∠ACP = ∠QCB.

6. Snow White and the Seven Dwarves are living in their house in the forest. On each
of 16 consecutive days, some of the dwarves worked in the diamond mine while the
remaining dwarves collected berries in the forest. No dwarf performed both types
of work on the same day. On any two different (not necessarily consecutive) days,
at least three dwarves each performed both types of work. Further, on the first
day, all seven dwarves worked in the diamond mine. Prove that, on one of these 16
days, all seven dwarves were collecting berries.
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§1 Solutions to Day 1
§1.1 EGMO 2013/1, proposed by David Monk (UNK)
Available online at https://aops.com/community/p3013167.

Problem statement

The side BC of the triangle ABC is extended beyond C to D so that CD = BC.
The side CA is extended beyond A to E so that AE = 2CA. Prove that if AD = BE
then the triangle ABC is right-angled.

Let ray DA meet BE at M . Consider the triangle EBD. Since the point lies on median
EC, and EA = 2AC, it follows that A is the centroid of 4EBD.

A

B C
D

E

M

So M is the midpoint of BE. Moreover MA = 1
2AD = 1

2BE; so MA = MB = ME
and hence 4ABE is inscribed in a circle with diameter BE. Thus ∠BAE = 90◦, so
∠BAC = 90◦.
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§1.2 EGMO 2013/2, proposed by Matti Lehtinen (FIN)
Available online at https://aops.com/community/p3013170.

Problem statement

Determine all integers m for which the m × m square can be dissected into five
rectangles, the side lengths of which are the integers 1, 2, . . . , 10 in some order.

The answer is that this is possible if and only if m = 11 or m = 13.

¶ Constructions for m = 11 and m = 13. See the figures below.

¶ Proof the task is impossible unless 11 ≤ m ≤ 13. The total area of the rectangles
is of the form A = a1b1 + · · · + a5b5 for (a1, . . . , b5) a permutation of (1, . . . , 10). By
applying the rearrangement inequality repeatedly one can prove that

A ≤ 1 · 2 + 3 · 4 + 5 · 6 + 7 · 8 + 9 · 10 = 190.

Analogously, we can get a matching lower bound

A ≥ 1 · 10 + 2 · 9 + 3 · 8 + 4 · 7 + 5 · 6 = 110.

Since A = m2 for integer m, it follows 11 ≤ m ≤ 13.

¶ Proof the task is impossible for m = 12. It remains to rule out such a tiling for a
12× 12 square. We start with the following structure claim:

Claim — Any tiling for m > 10 must either be the spiral pattern below or a
reflection of it.
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Proof. Label the square ABCD. Because m > 10, each corner of the square must be part
of a different rectangle. Consider the rectangle covering A, and let the vertex opposite A
be A′. Define B′, C ′, D′ similarly.

We contend that no two of A′, B′, C ′, D′ coincide. Indeed, if A′ = C ′, then we get the
figure on the left where the two purple rectangles are part of the tiling. The remaining
two “quadrants” must be dissected into three rectangles, but there is general a quadrant
cannot be divided into either 2 or 3 rectangles in aw way that doesn’t create two equal
lengths.

A B

CD

A′ = C ′

A B

CD

A′ = B′

Meanwhile, if A′ = B′, the two purple rectangles already obviously have a common
dimension (right figure).

Hence A′, B′, C ′, D′ are all different points. They must each be part of some rectangle
not using the corner. Moreover, every rectangle in the dissection has at least one vertex
not on the boundary of the square. So the fifth rectangle must be A′B′C ′D′ exactly.

Now on to the proof that m = 12 is impossible. Assume for contradiction a construction
exists and refer to the spiral figure above. Note that because 12 > 1+ 10, the side length
1 cannot belong to any edge of the outer 12× 12 square. This means that 1 must be a
side length of the center rectangle. Moreover, because the outer square has perimeter 48,
and we know 1 + 2 + · · ·+ 10 = 55, the center rectangle has perimeter 7. In other words,
the inner rectangle must be 1× 6 exactly.

6

1

Hence, we would need to partition the remaining numbers {2, 3, 4, 5, 7, 8, 9, 10} into eight
pairs such that two pairs differ by 1 and differ by 6 (in the picture, the paired numbers
are on opposite sides of the square). Note that 7 must be paired with 8 (since 7 ± 6
and 7− 1 are not available) and 5 must be paired with 4 (since 5± 6 and 5 + 1 are not
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available). But then the remaining pairs need to have difference 6, and there is no way
to form two such pairs from {2, 3, 9, 10}. This produces the desired contradiction.
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§1.3 EGMO 2013/3, proposed by Dan Schwarz (ROU)
Available online at https://aops.com/community/p3013178.

Problem statement

Let n be a positive integer.

(a) Prove that there exists a set S of 6n positive integers such that the least
common multiple of any two is at most 32n2.

(b) Show that every set T of 6n positive integers contains two elements with least
common multiple exceeding 9n2.

For part (a), let
S = {1, 2, . . . , 4n} ∪ {4n+ 2, 4n+ 4, . . . , 8n}

which works.
For (b), the main idea is as follows. Let x0 < x1 < · · · < xm be these integers. Assume

for contradiction the LCM’s are less than L. The main idea is the estimate

L ≥ xixi+1

gcd(xi, xi+1)
≥ xixi+1

xi+1 − xi

whence
1

L
≤ 1

xi
− 1

xi+1
.

so taking the sum starting from any k gives

m+ 1− k

L
≤ 1

xk
− 1

xm
<

1

xk
.

For (k,m) = (3n, 6n) and L = 9n2 this is a contradiction (since xk ≥ 3n).

Remark. China TST 2007/6 follows the same idea.
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§2 Solutions to Day 2
§2.1 EGMO 2013/4, proposed by Vesna Iršič (SLV)
Available online at https://aops.com/community/p3014762.

Problem statement

Find all positive integers a and b for which there are three consecutive integers at
which the polynomial P (n) = 1

b (n
5 + a) takes integer values.

The answer is

• Either b = 1; or

• a ≡ ±1 (mod 11) and b = 11 (and a > 0).

We consider only the case b > 1. Suppose that P is a prime power dividing b. Evidently
P is not even. Then there exists an n for which

n5 ≡ (n+ 1)5 ≡ (n− 1)5 (mod P ).

Therefore,
0 ≡ (n+ 1)5 + (n− 1)5 − 2n5 = 20n3 + 10n (mod P ).

Since n 6≡ 0 (mod p) for obvious reasons, we obtain that

n2 ≡ −1
2 (mod p).

Then,

0 ≡ 2((n+ 1)5 − (n− 1)5) (mod P )

= 20n4 + 40n2 + 4

≡ 20 · −1

4
+ 40 · −1

2
+ 4 (mod P )

= −11.

This implies P = 11. Since P can be any prime power dividing b, this forces b = 11.
In other words, b ∈ {1, 11}.
Finally, observe that

35 ≡ 45 ≡ 55 ≡ 1 (mod 11)

and
(−3)5 ≡ (−4)5 ≡ (−5)5 ≡ −1 (mod 11)

are the only such triples modulo 11. Therefore the solution set is the one claimed above.
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§2.2 EGMO 2013/5, proposed by Waldemar Pompe (POL)
Available online at https://aops.com/community/p3014767.

Problem statement

Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the sides
AC and BC, and it is internally tangent to the circle Ω at the point P . A line
parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q. Prove
that ∠ACP = ∠QCB.

First, let us extend AQ to meet BC at Q1. By homothety, we see that Q1 is just the
contact point of the A-excircle with BC.

A

B C

P

IA

Q1

Q

Now let us perform an inversion around A with radius
√
AB ·AC followed by a reflection

around the angle bisector; call this map Ψ. Note that Ψ fixes B and C. Moreover it
swaps BC and (ABC). Hence, this map swaps the A-excircle with the A-mixtilinear
incircle ω. Hence Ψ swaps P and Q1. It follows that AP and AQ1 are isogonal with
respect to ∠BAC, meaning ∠BAP = ∠CAQ1. Since ∠CAQ = ∠CAQ1 we are done.
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§2.3 EGMO 2013/6, proposed by Emil Kolev (BGR)
Available online at https://aops.com/community/p3014769.

Problem statement

Snow White and the Seven Dwarves are living in their house in the forest. On each
of 16 consecutive days, some of the dwarves worked in the diamond mine while the
remaining dwarves collected berries in the forest. No dwarf performed both types of
work on the same day. On any two different (not necessarily consecutive) days, at
least three dwarves each performed both types of work. Further, on the first day, all
seven dwarves worked in the diamond mine. Prove that, on one of these 16 days, all
seven dwarves were collecting berries.

Let Qn denote the vector space {0, 1}n. For a vector v, let v[i] denote the ith component.
We may identify each day with a vector vk, where vk[i] = 0 if dwarf i worked in the
diamond mine, and vk[i] = 1 otherwise. Let V = {v1, v2, . . . , v16} be the subset of Q7 in
the problem, and assume v16 = 0000000.

We first prove the following:

Lemma
Exactly two vectors start with each of 000, 001, . . . , 111. Similar statements hold
for any choice of three indices.

Proof. If three vectors start with 000 (say) then we run into problems.

Now we know that v16 is the all-null vector. Ignoring that vector (and hence considering
just the first 15 vectors), let ni be the number of 1’s in vi, where i = 1, 2, . . . , 15.

Claim — We have
15∑
i=1

(
ni

1

)
=

16

2

(
7

1

)
= 56

15∑
i=1

(
ni

2

)
=

16

22

(
7

2

)
= 84

15∑
i=1

(
ni

3

)
=

16

23

(
7

3

)
= 70.

Proof. This follows using the lemma and double counting. For example, the third equation
is counting the number of quadruples (i, j1, j2, j3) such that the ith string has a 1 in
the j1th, j2th, j3th position, where j1 < j2 < j3. The left-hand side counts the number
when summed by i; the right-hand side counts the number according to the

(
7
3

)
choices

of (j1, j2, j3).

We may then rewrite the lemma as
15∑
i=1

ni = 56
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15∑
i=1

n2
i = 2 · 84 + 56 = 224

15∑
i=1

n3
i = 6 · 70 + 3 · 224− 2 · 56 = 980.

Now remark that (ni − 3)(ni − 4)(ni − 7) ≤ 0 for each integer 1 ≤ ni ≤ 7. We compute

0 ≥
15∑
i=1

(ni − 3)(ni − 4)(ni − 7)

=
15∑
i=1

n3
i − 14n2

i + 61ni − 84

= 1 · 980− 14 · 224 + 61 · 56− 15 · 84
= 980− 3136 + 3416− 1260

= 0.

This implies that ni ∈ {3, 4, 7} for each i. If ni 6= 7 for any i then we have

224 =
∑

n2
i ≡ 15 · 2 6≡ 0 (mod 7)

which is impossible. This means that ni = 7 for some i, and therefore, 1111111 ∈ V , as
desired.

Remark. Up to permutation there turns out to be a unique set of 16 vectors. Xinyang
Chen gives the following compact description of the unique solution:

• 0000000 and 1111111, of course

• 1101000 and its six cyclic shifts 0110100, 0011010, 0001101, 1000110, 0100011, 1010001.

• The complements of the above seven strings (i.e. 0010111, 1001011, etc.).
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