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§1 USAMO 2017/1

Prove that there exist infinitely many pairs of relatively prime positive integers a, b > 1
for which a+ b divides ab + ba.

One construction: let d ≡ 1 (mod 4), d > 1. Let x = dd+2d

d+2 . Then set

a =
x+ d

2
, b =

x− d
2

.

To see this works, first check that b is odd and a is even. Let d = a− b be odd. Then:

a+ b | ab + ba ⇐⇒ (−b)b + ba ≡ 0 (mod a+ b)

⇐⇒ ba−b ≡ 1 (mod a+ b)

⇐⇒ bd ≡ 1 (mod d+ 2b)

⇐⇒ (−2)d ≡ dd (mod d+ 2b)

⇐⇒ d+ 2b | dd + 2d.

So it would be enough that

d+ 2b =
dd + 2d

d+ 2
=⇒ b =

1

2

(
dd + 2d

d+ 2
− d
)

which is what we constructed. Also, since gcd(x, d) = 1 it follows gcd(a, b) = gcd(d, b) = 1.

Remark. Ryan Kim points out that in fact, (a, b) = (2n− 1, 2n+ 1) is always a solution.

§2 JMO 2016/2

Prove that there exists a positive integer n < 106 such that 5n has six consecutive zeros
in its decimal representation.

One answer is n = 20 + 219 = 524308.
First, observe that

5n ≡ 520 (mod 520)

5n ≡ 520 (mod 220)

the former being immediate and the latter since ϕ(220) = 219. Hence 5n ≡ 520 (mod 1020).
Moreover, we have

520 =
1

220
· 1020 <

1

10002
· 1020 = 10−6 · 1020.

Thus the last 20 digits of 5n will begin with six zeros.

Remark. Many of the first posts in the JMO 2016 discussion thread (see https://aops.

com/community/c5h1230514) claimed that the problem was “super easy”. In fact, the
problem was solved by only about 10% of contestants.
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§3 Shortlist 2007 N2

Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such that
b− ank is divisible by k. Prove that b = An for some integer A.

Just let k = b2, so b ≡ Cn (mod b2). Hence Cn = b(bx+ 1), but gcd(b, bx+ 1) = 1 so
b = An for some A.

§4 IMO 2000/5

Does there exist a positive integer n such that n has exactly 2000 prime divisors and n
divides 2n + 1?

Answer: Yes.
We say that n is Korean if n | 2n + 1. First, observe that n = 9 is Korean. Now, the

problem is solved upon the following claim:

Claim. If n > 3 is Korean, there exists a prime p not dividing n such that np is Korean
too.

Proof. I claim that one can take any primitive prime divisor p of 22n− 1, which exists by
Zsigmondy theorem. Obviously p 6= 2. Then:

• Since p - 2ϕ(n) − 1 it follows then that p - n.

• Moreover, p | 2n + 1 since p - 2n − 1.

Hence np | 2n + 1 | 2np + 1 by Chinese Theorem, since gcd(n, p) = 1.

§5 BAMO 2011/5

Decide whether there exists a row of Pascal’s triangle containing four pairwise distinct
numbers a, b, c, d such that a = 2b and c = 2d.

An example is
(
203
68

)
= 2
(
203
67

)
and

(
203
85

)
= 2
(
203
83

)
.

To get this, the idea is to look for two adjacent entries and two entries off by one, and
solving the corresponding equations. The first one is simple:(

n

j

)
= 2

(
n

j − 1

)
=⇒ n = 3j − 1.

The second one is more involved: (
n

k

)
= 2

(
n

k − 2

)
=⇒ (n− k + 1)(n− k + 2) = 2k(k − 1)

=⇒ 4(n− k + 1)(n− k + 2) = 8k(k − 1)

=⇒ (2n− 2k + 3)2 − 1 = 2
(
(2k − 1)2 − 1

)
=⇒ (2n− 2k + 3)2 − 2(2k − 1)2 = −1

Using standard methods for the Pell equation:
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• (7 + 5
√

2)(3 + 2
√

2) = 41 + 29
√

2. So k = 15, n = 34, doesn’t work.

• (41 + 29
√

2)(3 + 2
√

2) = 239 + 169
√

2. Then k = 85, n = 203.

§6 TSTST 2012/5

A rational number x is given. Prove that there exists a sequence x0, x1, x2, . . . of rational
numbers with the following properties:

(a) x0 = x;

(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 + 1
n ;

(c) xn is an integer for some n.

Think of the sequence as a process over time. We’ll show that:

Claim. At any given time t, if the denominator of xt is some odd prime power q = pe,
then we can delete a factor of p from the denominator, while only adding powers of two
to the denominator.

(Thus we can just delete off all the odd primes one by one and then double appropriately
many times.)

Proof. The idea is to add only fractions of the form (2kq)−1.
Indeed, let n be large, and suppose t < 2r+1q < 2r+2q < · · · < 2r+mq < n. For some

binary variables εi ∈ {0, 1} we can have

xn = 2n−txt + c1 ·
ε1
q

+ c2 ·
ε2
q
· · ·+ cs ·

εm
q

where ci is some power of 2 (to be exact, ci = 2n−2r+iq

2r+1 , but the exact value doesn’t
matter).

If m is large enough the set {0, c1}+ {0, c2}+ · · ·+ {0, cm} spans everything modulo
p. (Actually, Cauchy-Davenport implies m = p is enough, but one can also just use
Pigeonhole to notice some residue appears more than p times, for m = O(p2).) Thus we
can eliminate one factor of p from the denominator, as desired.

§7 Shortlist 2014 N4

Let n > 1 be an integer. Prove that there are infinitely many integers k ≥ 1 such that⌊
nk

k

⌋
is odd.

If n is odd, then we can pick any prime p dividing n, and select k = pm for sufficiently
large integers m.

Suppose n is even now. Then by Kobayashi’s Theorem, there exist infinitely many
primes p dividing some number of the form

nn
r−1 − 1.
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for some integer r. Let p > n be such a prime, with corresponding integer r. It then
follows that

nn
rp ≡ nr (mod nrp)

since this is clearly correct mod nr, and also correct modulo p. If we select k = nrp, we
have ⌊

nk

k

⌋
=
nn

rpp− nr

nrp

which is odd.

§8 USA TST 2007/4

Determine whether or not there exist positive integers a and b such that a does not divide
bn − n for all positive integers n.

The answer is no. In fact, for any fixed integer b, the sequence

b, bb, bb
b
, . . .

is eventually constant modulo any prime.

§9 China TST 2018/2/4

Let k, M be positive integers such that k − 1 is not squarefree. Prove that there exists a
positive real number α such that bα · knc and M are relatively prime for any positive
integer n.

Let p2 | k − 1 be prime and let d = k−1
p . Consider the number

α = N + 0.ddd . . .k

in base k. We claim it works for a suitable integer N .
Indeed, we have

bαknc = knN + d · k
n − 1

k − 1
=

(
N +

1

p

)
kn − 1

p
.

If we pick N such that p - N , then the middle expression is not divisible by p (since d is
divisible by p). Moreover, we can select N such that q | N + p−1 for every prime q |M
other than p. Thus the Chinese remainder theorem completes the problem.

§10 EGMO 2018/2

Consider the set

A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be written
as the product of f(x) elements of A (not necessarily distinct). Prove that there are
infinitely many pairs of integers x ≥ 2 and y ≥ 2 for which

f(xy) < f(x) + f(y).

5



By
Ev
an

Ch
en

OT
IS,

Int
ern

al
Us
e

Evan Chen (OTIS, updated 2018-04-26) Solutions Notes for DNY-NTCONSTRUCT

One of many constructions: let n = 2e+ 1 for e ≡ 5 (mod 10) and let x = 11, y = n/11
be our two integers.

We prove two lemmas:

Claim. For any m ≥ 2 we have f(m) ≥ dlog2me.
Proof. This is obvious.

It follows that f(n) = e+ 1, since n = n
n−1 · 2

e.

Claim. f(11) = 5.

Proof. We have 11 = 33
32 ·

4
3 · 2

3. So it suffices to prove f(11) > 4.
Note that a decomposition of 11 must contain a fraction at most 11

10 = 1.1. But
23 · 1.1 = 8.8 < 11, contradiction.

To finish, note that

f(11) + f(n/11) ≥ 5 + log2(n/11) = 1 + log2(16n/11) > 1 + e = 1 + f(n).

Remark. Most solutions seem to involve picking n such that f(n) is easy to compute.
Indeed, it’s hard to get nontrivial lower bounds other than the log, and even harder
to actually come up with complicated constructions. It might be said the key to this
problem is doing as little number theory as possible.

§11 USAMO 2006/3

For integral m, let p(m) be the greatest prime divisor of m. By convention, we set
p(±1) = 1 and p(0) =∞. Find all polynomials f with integer coefficients such that the
sequence

{p(f(n2))− 2n}n≥0
is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

If f is the (possibly empty) product of linear factors of the form 4n − a2, then it
satisfies the condition. We will prove no other polynomials work. In what follows, assume
f is irreducible and nonconstant.

It suffices to show for every positive integer c, there exists a prime p and a nonnegative
integer n such that n ≤ p−1

2 − c and p divides f(n2).
Firstly, recall there are infinitely many odd primes p, with p > c, such that p divides

some f(n2), by Schur’s Theorem. Looking mod such a p we can find n between 0 and
p−1
2 (since n2 ≡ (−n)2 (mod p)). We claim that only finitely many p from this set can

fail now. For if a p fails, then its n must be between p−1
2 − c and p−1

2 . That means for
some 0 ≤ k ≤ c we have

0 ≡ f

((
p− 1

2
− k
)2
)
≡ f

((
k +

1

2

)2
)

(mod p).

There are only finitely many p dividing

c∏
k=1

f

((
k +

1

2

)2
)

unless one of the terms in the product is zero; this means that 4n− (2k + 1)2 divides
f(n). This establishes the claim and finishes the problem.
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§12 USAMO 2013/5

Let m and n be positive integers. Prove that there exists an integer c such that cm and
cn have the same nonzero decimal digits.

One-line spoiler: 142857.
To work out the details, there exist arbitrarily large primes p such that

p | 10em− n

for some positive integer e, say by Kobayashi theorem (or other more mundane means).
In that case, the periodic decimal expansions of m

p and n
p are cyclic shifts of each other.

Thus if one looks at 1
p the repeating block of decimals, one may take c to be that resulting

integer.

Remark. The official USAMO solutions propose using the fact that 10 is a primitive
root modulo 7e for each e ≥ 1, by Hensel lifting lemma. This argument is incorrect,
because it breaks if either m or n are divisible by 7.

One may be tempted to resort to using large primes rather than powers of 7 to deal
with this issue. However it is an open conjecture (a special case of Artin’s primitive root
conjecture) whether or not 10 (mod p) is primitive infinitely often, which is the condition
necessary for this argument to work.

§13 RMM 2012/4

Prove there are infinitely many integers n such that n does not divide 2n + 1, but divides
22

n+1 + 1.

Zsig hammer! Define the sequence n0, n1, . . . as follows. Set n0 = 3, and then for k ≥ 1
we let nk = pnk−1 where p is a primitive prime divisor of 22

nk−1+1 + 1 (by Zsigmondy).
For example, n1 = 57.

This sequence of nk’s works for k ≥ 1, by construction.
It’s very similar to IMO 2000 Problem 5.

§14 USAMO 2012/3

Determine which integers n > 1 have the property that there exists an infinite sequence
a1, a2, a3, . . . of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

Answer: all n > 2.
For n = 2, we have ak+2a2k = 0, which is clearly not possible, since it implies a2k = a1

2k

for all k.
For n ≥ 3 we will construct a completely multiplicative sequence (meaning aij = aiaj

for all i and j). Thus (ai) is determined by its value on primes, and satisfies the condition
as long as a1 + 2a2 + · · ·+nan = 0. The idea is to take two large primes and use Bezout’s
theorem, but the details require significant care.
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We start by solving the case where n ≥ 9. In that case, by Bertrand postulate there
exists primes p and q such that

dn/2e < q < 2 dn/2e . and
1

2
(q − 1) < p < q − 1

Clearly p 6= q, and q ≥ 7, so p > 3. Also, p < q < n but 2q > n, and 4p ≥ 4
(
1
2(q + 1)

)
> n.

We now stipulate that ar = 1 for any prime r 6= p, q (in particular including r = 2 and
r = 3). There are now three cases, identical in substance.

• If p, 2p, 3p ∈ [1, n] then we would like to choose nonzero ap and aq such that

6p · ap + q · aq = 6p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(6p, q) = 1.

• Else if p, 2p ∈ [1, n] then we would like to choose nonzero ap and aq such that

3p · ap + q · aq = 3p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(3p, q) = 1.

• Else if p ∈ [1, n] then we would like to choose nonzero ap and aq such that

p · ap + q · aq = p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(p, q) = 1. (This case is actually
possible in a few edge cases, for example when n = 9, q = 7, p = 5.)

It remains to resolve the cases where 3 ≤ n ≤ 8. We enumerate these cases manually:

• For n = 3, let an = (−1)ν3(n).

• For n = 4, let an = (−1)ν2(n)+ν3(n).

• For n = 5, let an = (−2)ν5(n).

• For n = 6, let an = 5ν2(n) · 3ν3(n) · (−42)ν5(n).

• For n = 7, let an = (−3)ν7(n).

• For n = 8, we can choose (p, q) = (5, 7) in the prior construction.

This completes the constructions for all n > 2.

§15 TSTST 2016/3

Decide whether or not there exists a nonconstant polynomial Q(x) with integer coefficients
with the following property: for every positive integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

We claim that
Q(x) = 420(x2 − 1)2

works. Clearly, it suffices to prove the result when n = 4 and when n is an odd prime p.
The case n = 4 is trivial, so assume now n = p is an odd prime.

First, we prove the following easy claim.

8



By
Ev
an

Ch
en

OT
IS,

Int
ern

al
Us
e

Evan Chen (OTIS, updated 2018-04-26) Solutions Notes for DNY-NTCONSTRUCT

Claim. For any odd prime p, there are at least 1
2(p−3) values of a for which

(
1−a2
p

)
= +1.

Proof. Note that if k 6= 0, k 6= ±1, k2 6= −1, then a = 2(k + k−1)−1 works. Also a = 0
works.

Let F (x) = (x2 − 1)2. The range of F modulo p is contained within the 1
2(p + 1)

quadratic residues modulo p. On the other hand, if for some t neither of 1 ± t is a
quadratic residue, then t2 is omitted from the range of F as well. Call such a value of t
useful, and let N be the number of useful residues. We aim to show N ≥ 1

4p− 2.
We compute a lower bound on the number N of useful t by writing

N =
1

4

(∑
t

[(
1−

(
1− t
p

))(
1−

(
1 + t

p

))]
−
(

1−
(

2

p

))
−
(

1−
(
−2

p

)))

≥ 1

4

∑
t

[(
1−

(
1− t
p

))(
1−

(
1 + t

p

))]
− 1

=
1

4

(
p+

∑
t

(
1− t2

p

))
− 1

≥ 1

4

(
p+ (+1) · 12(p− 3) + 0 · 2 + (−1) · ((p− 2)− 1

2(p− 3))
)
− 1

≥ 1

4
(p− 5) .

Thus, the range of F has size at most

1

2
(p+ 1)− 1

2
N ≤ 3

8
(p+ 3).

This is less than 0.499p for any p ≥ 11.

Remark. In fact, the computation above is essentially an equality. There are only two
points where terms are dropped: one, when p ≡ 3 (mod 4) there are no k2 = −1 in
the lemma, and secondly, the terms 1− (2/p) and 1− (−2/p) are dropped in the initial
estimate for N . With suitable modifications, one can show that in fact, the range of F is
exactly equal to

1

2
(p+ 1)− 1

2
N =


1
8(3p+ 5) p ≡ 1 (mod 8)
1
8(3p+ 7) p ≡ 3 (mod 8)
1
8(3p+ 9) p ≡ 5 (mod 8)
1
8(3p+ 3) p ≡ 7 (mod 8).

9
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§16 Shortlist 2013 N4

Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . such
that the number akak−1 . . . a1 is a perfect square for all sufficiently large k.

The answer is no.
Assume for contradiction such a sequence exists, and let xk =

√
akak−1 . . . a1 for k

large enough. Difference of squares gives

Ak ·Bk
def
= (xk+1 − xk)(xk + xk+1) = ak · 10k

with gcd(Ak, Bk) = 2 gcd(xk, xk−1) since xk and xk−1 have the same parity. Note that
we have the inequalities

Ak ≤ Bk < 2xk+1 < 2 ·
√

10k+1.

The idea will be that divisibility issues will force one of Ak and Bk to be too large.
We now split the proof in two cases:

• First, assume ν5(x
2
k) ≥ k for all k. Then in particular a1 = 5, so all xk are always

odd. So one of Ak and Bk is divisible by 2k−1. Moreover, both divisible by at least
5k/2. So for each k,

min(Ak, Bk) ≥ 2k−1 · 5k/2

which is impossible for large enough k.

• Next assume ν5(x
2
m) = 2e < m for some m. Then since x2k+1 ≡ x2k (mod 10k), we

obtain ν5(x
2
k) = 2e for all k > m. Now,

min(Ak, Bk) ≥ 5k−e

which again is impossible for k large enough.

§17 EGMO 2014/3

We denote the number of positive divisors of a positive integer m by d(m) and the number
of distinct prime divisors of m by ω(m). Let k be a positive integer. Prove that there
exist infinitely many positive integers n such that ω(n) = k and d(n) does not divide
d(a2 + b2) for any positive integers a, b satisfying a+ b = n.

Weird problem. The condition is very artificial, although the construction is kind
of fun. I’m guessing the low scores during the actual contest were actually due to an
unusually tricky P2.

Let n = 2p−1t, where t ≡ 5 (mod 6), ω(t) = k − 1, and p � t is a sufficiently large
prime. Let a+ b = n and a2 + b2 = c. We claim that p - d(c), which solves the problem
since p | 2(n).

First, note that 3 - a2 + b2, since 3 - n. Next, note that c < 2n2 < 5p−1 (since p� t)
so no exponent of an odd prime in c exceeds p− 2. Moreover, c < 23p−1.

So, it remains to check that ν2(c) /∈ {p− 1, 2p− 1}. On the one hand, if ν2(a) < ν2(b),
then ν2(a) = p− 1 and ν2(c) = 2ν2(a) = 2p− 2. On the other hand, if ν2(a) = ν2(b) then
ν2(a) ≤ p− 2, and ν2(c) = 2ν2(a) + 1 is odd and less than 2p− 1.

10
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§18 IMO 2017/6

An irreducible lattice point is an ordered pair of integers (x, y) satisfying gcd(x, y) = 1.
Prove that if S is a finite set of irreducible lattice points then there exists a homogeneous
polynomial f(x, y) of degree at least 1 such that f(x, y) = 1 for each (x, y) ∈ S.

First solution (Dan Carmon, Israel) We prove the result by induction on |S|, with
the base case being Bezout’s Lemma (n = 1). For the inductive step, suppose we want
to add a given pair (am+1, bm+1) to {(a1, . . . , am), (b1, . . . , bm)}. By a suitable linear
transformation assume (am+1, bm+1) = (1, 0). (The transformation is not necessary to
proceed but cleans up the presentation that follows.)

Let g(x, y) be a polynomial which works on the latter set. We claim we can choose the
new polynomial f of the form

f(x, y) = g(x, y)M − Cxdeg g·M−m
m∏
i=1

(bix− aiy).

where C and M are integer parameters we may adjust.
Since f(ai, bi) = 1 by construction we just need

1 = f(1, 0) = g(1, 0)M − C
∏

bi.

If
∏
bi = 0 we are done, since bi = 0 =⇒ ai = ±1 in that case and so g(1, 0) = ±1, thus

take M = 2. So it suffices to prove:

Claim. gcd (g(1, 0), bi) = 1 when bi 6= 0.

Proof. Fix i. If bi = 0 then ai = ±1 and g(±1, 0) = ±1. Otherwise know

1 = g(ai, bi) ≡ g(ai, 0) (mod bi)

and since the polynomial is homogeneous with gcd(ai, bi) = 1 it follows g(1, 0) 6≡ 0
(mod bi) as well.

Then take M a large even multiple of ϕ(
∏
bi) and we’re done.

Second solution (Lagrange) The main claim is that:

Claim. For every positive integer N , there is a homogeneous polynomial P (x, y) such
that P (x, y) ≡ 1 (mod N) whenever gcd(x, y) = 1.

(This claim is actually implied by the problem.)

Proof. For N = pe a prime take (xp−1 + yp−1)ϕ(N) when p is odd, and (x2 + xy+ y2)ϕ(N)

for p = 2.
Now suppose N = q1q2 . . . qk where qi are prime powers. Look at the polynomial Qi

described above for i = 1, . . . , k. Now

N

qi
Qi(x, y) ≡ N

qi
(mod N)

for all x and y; so we can put together the polynomials N
qi
Qi by Bézout lemma.

Let S = {(ai, bi) | i = 1, . . . ,m}. We have the natural homogeneous “Lagrange poly-
nomials” Lk(x, y) =

∏
i 6=k(bix− aiy). Now let N =

∏
k Lk(xk, yk) and take P as above.

Then we can take a large power of P , and for each i subtract an appropriate multiple of
Li(x, y).
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