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§0 Problems

§0.1 Day 1

Problem 1. As usual, let Z[x] denote the set of single-variable polynomials in x with
integer coefficients. Find all functions θ : Z[x] → Z such that for any polynomials
p, q ∈ Z[x],

• θ(p+ 1) = θ(p) + 1, and

• if θ(p) 6= 0 then θ(p) divides θ(p · q).

Problem 2. In the nation of Onewaynia, certain pairs of cities are connected by one-way
roads. Every road connects exactly two cities (roads are allowed to cross each other, e.g.,
via bridges), and each pair of cities has at most one road between them. Moreover, every
city has exactly two roads leaving it and exactly two roads entering it.

We wish to close half the roads of Onewaynia in such a way that every city has exactly
one road leaving it and exactly one road entering it. Show that the number of ways to
do so is a power of 2 greater than 1 (i.e. of the form 2n for some integer n ≥ 1).

Problem 3. Let ABC be an acute triangle with incenter I, circumcenter O, and
circumcircle Γ. Let M be the midpoint of AB. Ray AI meets BC at D. Denote by
ω and γ the circumcircles of 4BIC and 4BAD, respectively. Line MO meets ω at
X and Y , while line CO meets ω at C and Q. Assume that Q lies inside 4ABC and
∠AQM = ∠ACB.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that
∠BAC 6= 60◦, prove that these four lines are concurrent on Γ.

§0.2 Day 2

Problem 4. For an integer n > 0, denote by F(n) the set of integers m > 0 for which
the polynomial p(x) = x2 +mx+ n has an integer root.

(a) Let S denote the set of integers n > 0 for which F(n) contains two consecutive
integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n) contains
three consecutive integers.

Problem 5. Let ABC be an acute triangle with circumcircle ω, and let H be the foot
of the altitude from A to BC. Let P and Q be the points on ω with PA = PH and
QA = QH. The tangent to ω at P intersects lines AC and AB at E1 and F1 respectively;
the tangent to ω at Q intersects lines AC and AB at E2 and F2 respectively. Show that
the circumcircles of 4AE1F1 and 4AE2F2 are congruent, and the line through their
centers is parallel to the tangent to ω at A.

Problem 6. Let S = {1, . . . , 100}, and for every positive integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements of S red,
then at least half of the n-tuples in Tn have an even number of coordinates with red
elements.
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§0.3 Day 3

Problem 7. Let n be a positive integer. A frog starts on the number line at 0. Suppose
it makes a finite sequence of hops, subject to two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.

• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either direction,
left or right.)

Let S be the sum of the (positive) lengths of all hops in the sequence. What is the
maximum possible value of S?

Problem 8. For which positive integers b > 2 do there exist infinitely many positive
integers n such that n2 divides bn + 1?

Problem 9. Show that there is an absolute constant c < 1 with the following property:
whenever P is a polygon with area 1 in the plane, one can translate it by a distance of
1

100 in some direction to obtain a polygon Q, for which the intersection of the interiors of
P and Q has total area at most c.
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§1 Solutions to Day 1

§1.1 TSTST Problem 1, by Evan Chen and Yang Liu

As usual, let Z[x] denote the set of single-variable polynomials in x with integer coefficients.
Find all functions θ : Z[x]→ Z such that for any polynomials p, q ∈ Z[x],

• θ(p+ 1) = θ(p) + 1, and

• if θ(p) 6= 0 then θ(p) divides θ(p · q).

The answer is θ : p 7→ p(c), for each choice of c ∈ Z. Obviously these work, so we
prove these are the only ones. In what follows, x ∈ Z[x] is the identity polynomial, and
c = θ(x).

First solution (Merlijn Staps) Consider an integer n 6= c. Because x− n | p(x)− p(n),
we have

θ(x− n) | θ(p(x)− p(n)) =⇒ c− n | θ(p(x))− p(n).

On the other hand, c − n | p(c) − p(n). Combining the previous two gives c − n |
θ(p(x))− p(c), and by letting n large we conclude θ(p(x))− p(c) = 0, so θ(p(x)) = p(c).

Second solution First, we settle the case deg p = 0. In that case, from the second
property, θ(m) = m+ θ(0) for every integer m ∈ Z (viewed as a constant polynomial).
Thus m+ θ(0) | 2m+ θ(0), hence m+ θ(0) | −θ(0), so θ(0) = 0 by taking m large. Thus
θ(m) = m for m ∈ Z.

Next, we address the case of deg p = 1. We know θ(x+ b) = c+ b for b ∈ Z. Now for
each particular a ∈ Z, we have

c+ k | θ(x+ k) | θ(ax+ ak) = θ(ax) + ak =⇒ c+ k | θ(ax)− ac.

for any k 6= −c. Since this is true for large enough k, we conclude θ(ax) = ac. Thus
θ(ax+ b) = ac+ b.

We now proceed by induction on deg p. Fix a polynomial p and assume it’s true for
all p of smaller degree. Choose a large integer n (to be determined later) for which
p(n) 6= p(c). We then have

p(c)− p(n)

c− n
= θ

(
p− p(n)

x− n

)
| θ (p− p(n)) = θ(p)− p(n).

Subtracting off c− n times the left-hand side gives

p(c)− p(n)

c− n
| θ(p)− p(c).

The left-hand side can be made arbitrarily large by letting n→∞, since deg p ≥ 2. Thus
θ(p) = p(c), concluding the proof.
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Authorship comments I will tell you a story about the creation of this problem. Yang
Liu and I were looking over the drafts of December and January TST in October 2017, and
both of us had the impression that the test was too difficult. This sparked a non-serious
suggestion that we should try to come up with a problem now that would be easy enough
to use. While we ended up just joking about changing the TST, we did get this problem
out of it.

Our idea was to come up with a functional equation that was different from the usual
fare: at first we tried Z[x]→ Z[x], but then I suggested the idea of using Z[x]→ Z, with
the answer being the “evaluation” map. Well, what properties does that satisfy? One
answer was a− b | p(a)− p(b); this didn’t immediately lead to anything, but eventually
we hit on the form of the problem above off this idea. At first we didn’t require θ(p) 6= 0
in the bullet, but without the condition the problem was too easy, since 0 divides only
itself; and so the condition was added and we got the functional equation.

I proposed the problem to USAMO 2018, but it was rejected (unsurprisingly; I think
the problem may be too abstract for novice contestants.) Instead it was used for TSTST,
which I thought fit better.

§1.2 TSTST Problem 2, by Victor Wang

In the nation of Onewaynia, certain pairs of cities are connected by one-way roads. Every
road connects exactly two cities (roads are allowed to cross each other, e.g., via bridges),
and each pair of cities has at most one road between them. Moreover, every city has
exactly two roads leaving it and exactly two roads entering it.

We wish to close half the roads of Onewaynia in such a way that every city has exactly
one road leaving it and exactly one road entering it. Show that the number of ways to
do so is a power of 2 greater than 1 (i.e. of the form 2n for some integer n ≥ 1).

In the language of graph theory, we have a simple digraph G which is 2-regular and we
seek the number of sub-digraphs which are 1-regular. We now present two solution paths.

First solution, combinatorial We construct a simple undirected bipartite graph Γ as
follows:

• the vertex set consists of two copies of V (G), say Vout and Vin; and

• for v ∈ Vout and w ∈ Vin we have an undirected edge vw ∈ E(Γ) if and only if the
directed edge v → w is in G.

Moreover, the desired sub-digraphs of H correspond exactly to perfect matchings of Γ.
However the graph Γ is 2-regular and hence consists of several disjoint (simple) cycles

of even length. If there are n such cycles, the number of perfect matchings is 2n, as
desired.

Second solution by linear algebra over F2 (Brian Lawrence) This is actually not that
different from the first solution. For each edge e, we create an indicator variable xe. We
then require for each vertex v that:

• If e1 and e2 are the two edges leaving v, then we require xe1 + xe2 ≡ 1 (mod 2).

• If e3 and e4 are the two edges entering v, then we require xe3 + xe4 ≡ 1 (mod 2).
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We thus get a large system of equations. Moreover, the solutions come in natural pairs ~x
and ~x+~1 and therefore the number of solutions is either zero, or a power of two. So we
just have to prove there is at least one solution.

For linear algebra reasons, there can only be zero solutions if some nontrivial linear
combination of the equations gives the sum 0 ≡ 1. So suppose we added up some subset S
of the equations for which every variable appeared on the left-hand side an even number
of times. Then every variable that did appear appeared exactly twice; and accordingly
we see that the edges corresponding to these variables form one or more even cycles as in
the previous solution. Of course, this means |S| is even, so we really have 0 ≡ 0 (mod 2)
as needed.

Remark. The author’s original proposal contained a second part asking to show that
it was not always possible for the resulting H to be connected, even if G was strongly
connected. This problem is related to IMO Shortlist 2002 C6, which gives an example of
a strongly connected graph which does have a full directed Hamiltonian cycle.

§1.3 TSTST Problem 3, by Evan Chen and Yannick Yao

Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle Γ. Let
M be the midpoint of AB. Ray AI meets BC at D. Denote by ω and γ the circumcircles
of 4BIC and 4BAD, respectively. Line MO meets ω at X and Y , while line CO meets
ω at C and Q. Assume that Q lies inside 4ABC and ∠AQM = ∠ACB.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that
∠BAC 6= 60◦, prove that these four lines are concurrent on Γ.

Henceforth assume ∠A 6= 60◦; we prove the concurrence. Let L denote the center of ω,
which is the midpoint of minor arc BC.

Claim. Let K be the point on ω such that KL ‖ AB and KC ‖ AL. Then KA is
tangent to γ, and we may put

x = KA = LB = LC = LX = LY = KX = KY.

Proof. By construction, KA = LB = LC. Also, MO is the perpendicular bisector of
KL (since the chords KL, AB of ω are parallel) and so KXLY is a rhombus as well.

Moreover, KA is tangent to γ as well since

]KAD = ]KAL = ]KAC + ]CAL = ]KBC + ]ABK = ]ABC.
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L

B C

A

M N

O

E

K

X

Y

D

Q

Up to now we have not used the existence of Q; we henceforth do so.
Note that Q 6= O, since ∠A 6= 60◦ =⇒ O /∈ ω. Moreover, we have ∠AOM = ∠ACB

too. Since O and Q both lie inside 4ABC, this implies that A, M , O, Q are concyclic.
As Q 6= O we conclude ∠CQA = 90◦.

The main claim is now:

Claim. Assuming Q exists, the rhombus LXKY is a square. In particular, KX and
KY are tangent to ω.

First proof of Claim, communicated by Milan Haiman. Observe that 4QLC ∼ 4LOC.
Hence, CL2 = CO · CQ. Then,

x2 = CL2 = CO · CQ = CN · CA =
1

2
CA2 =

1

2
LK2

where we have also used the fact AQON is cyclic. Thus LK =
√

2x and so the rhombus
LXKY is actually a square.

Second proof of Claim, Evan Chen. Observe that Q lies on the circle with diameter AC,
centered at N , say. This means that O lies on the radical axis of ω and (N), hence
NL ⊥ CO implying

NO2 + CL2 = NC2 + LO2 = NC2 +OC2 = NC2 +NO2 +NC2

=⇒ x2 = 2NC2

=⇒ x =
√

2NC =
1√
2
AC =

1√
2
LK.

So LXKY is a rhombus with LK =
√

2x. Hence it is a square.

Third proof of Claim. A solution by trig is also possible. As in the previous claims, it
suffices to show that AC =

√
2x.
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First, we compute the length CQ in two ways; by angle chasing one can show ∠CBQ =
180◦ − (∠BQC + ∠QCB) = 1

2∠A, and so

AC sinB = CQ =
BC

sin(90◦ + 1
2∠A)

· sin 1

2
∠A

⇐⇒ sin2B =
sinA · sin 1

2∠A

cos 1
2∠A

⇐⇒ sin2B = 2 sin2 1

2
∠A

⇐⇒ sinB =
√

2 sin
1

2
∠A

⇐⇒ 2R sinB =
√

2

(
2R sin

1

2
∠A

)
⇐⇒ AC =

√
2x

as desired (we have here used the fact 4ABC is acute to take square roots).
It is interesting to note that sin2B = 2 sin2 1

2∠A can be rewritten as

cosA = cos2B

since cos2B = 1− sin2B = 1− 2 sin2 1
2∠A = cosA; this is the condition for the existence

of the point Q.

We finish by proving that
KD = KA

and hence line KD is tangent to γ. Let E = BC ∩KL. Then

LE · LK = LC2 = LX2 =
1

2
LK2

and so E is the midpoint of LK. Thus MXOY , BC, KL are concurrent at E. As
DL ‖ KC, we find that DLCK is a parallelogram, so KD = CL = KA as well. Thus
KD and KA are tangent to γ.

Remark. The condition ∠A 6= 60◦ cannot be dropped, since if Q = O the problem is
not true.

On the other hand, nearly all solutions begin by observing Q 6= O and then obtaining
∠AQO = 90◦. This gives a way to construct the diagram by hand with ruler and compass.
One draws an arbitrary chord BC of a circle ω centered at L, and constructs O as the
circumcenter of 4BLC (hence obtaining Γ). Then Q is defined as the intersection of ray
CO with ω, and A is defined by taking the perpendicular line through Q on the circle Γ.
In this way we can draw a triangle ABC satisfying the problem conditions.

Authorship comments In the notation of the present points, the question originally
sent to me by Yannick Yao read:

Circles (L) and (O) are drawn, meeting at B and C, with L on (O). Ray CO
meets (L) at Q, and A is on (O) such that ∠CQA = 90◦. The angle bisector
of ∠AOB meets (L) at X and Y . Show that ∠XLY = 90◦.

Notice the points M and K are absent from the problem. I am told this was found as
part of the computer game “Euclidea”. Using this as the starting point, I constructed the
TSTST problem by recognizing the significance of that special point K, which became
the center of attention.
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§2 Solutions to Day 2

§2.1 TSTST Problem 4, by Ivan Borsenco

For an integer n > 0, denote by F(n) the set of integers m > 0 for which the polynomial
p(x) = x2 +mx+ n has an integer root.

(a) Let S denote the set of integers n > 0 for which F(n) contains two consecutive
integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n) contains
three consecutive integers.

We prove the following.

Claim. The set S is given explicitly by S = {x(x+ 1)y(y + 1) | x, y > 0}.

Proof. Note that m,m+ 1 ∈ F(n) if and only if there exist integers q > p ≥ 0 such that

m2 − 4n = p2

(m+ 1)2 − 4n = q2.

Subtraction gives 2m + 1 = q2 − p2, so p and q are different parities. We can thus let
q − p = 2x+ 1, q + p = 2y + 1, where y ≥ x ≥ 0 are integers. It follows that

4n = m2 − p2

=

(
q2 − p2 − 1

2

)2

− p2 =

(
q2 − p2 − 1

2
− p
)(

q2 − p2 − 1

2
+ p

)
=
q2 − (p2 + 2p+ 1)

2
· q

2 − (p2 − 2p+ 1)

2

=
1

4
(q − p− 1)(q − p+ 1)(q + p− 1)(q + p+ 1) =

1

4
(2x)(2x+ 2)(2y)(2y + 2)

=⇒ n = x(x+ 1)y(y + 1).

Since n > 0 we require x, y > 0. Conversely, if n = x(x + 1)y(y + 1) for positive x
and y then m =

√
p2 + 4n =

√
(y − x)2 + 4n = 2xy + x+ y = x(y + 1) + (x+ 1)y and

m+ 1 = 2xy + x+ y + 1 = xy + (x+ 1)(y + 1). Thus we conclude the main claim.

From this, part (a) follows as

∑
n∈S

n−1 ≤

∑
x≥1

1

x(x+ 1)

∑
y≥1

1

y(y + 1)

 = 1 · 1 = 1.

As for (b), retain the notation in the proof of the claim. Now m+ 2 ∈ S if and only if
(m+ 2)2 − 4n is a square, say r2. Writing in terms of p and q as parameters we find

r2 = (m+ 2)2 − 4n = m2 − 4n+ 4m+ 4 = p2 + 2 + 2(2m+ 1)

= p2 + 2(q2 − p2) + 2 = 2q2 − p2 + 2

⇐⇒ 2q2 + 2 = p2 + r2 (†)

9
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with q > p of different parity and n = 1
16(q − p− 1)(q − p+ 1)(q + p− 1)(q + p+ 1).

Note that (by taking modulo 8) we have q 6≡ p ≡ r (mod 2), and so there are no parity
issues and we will always assume p < q < r in (†). Now, for every q, the equation (†) has
a canonical solution (p, r) = (q − 1, q + 1), but this leaves n = 0. Thus we want to show
for infinitely many q there is a third way to write 2q2 + 2 as a sum of squares, which will
give the desired p.

To do this, choose large integers q such that q2 + 1 is divisible by at least three distinct
1 mod 4 primes. Since each such prime can be written as a sum of two squares, using
Lagrange identity, we can deduce that 2q2 + 2 can be written as a sum of two squares in
at least three different ways, as desired.

Remark. We can see that n = 144 is the smallest integer such that F(n) contains
three consecutive integers and n = 15120 is the smallest integer such that F(n) contains
four consecutive integers. It would be interesting to determine whether the number of
consecutive elements in F(n) can be arbitrarily large or is bounded.

§2.2 TSTST Problem 5, by Ankan Bhattacharya and Evan Chen

Let ABC be an acute triangle with circumcircle ω, and let H be the foot of the altitude
from A to BC. Let P and Q be the points on ω with PA = PH and QA = QH. The
tangent to ω at P intersects lines AC and AB at E1 and F1 respectively; the tangent to ω
at Q intersects lines AC and AB at E2 and F2 respectively. Show that the circumcircles
of 4AE1F1 and 4AE2F2 are congruent, and the line through their centers is parallel to
the tangent to ω at A.

Let O be the center of ω, and let M = PQ∩AB and N = PQ∩AC be the midpoints
of AB and AC respectively. Refer to the diagram below.

A

B C

O

M NP Q

E1

F1

E2

F2

The main idea is to prove two key claims involving O, which imply the result:

(i) quadrilaterals AOE1F1 and AOE2F2 are cyclic (giving the radical axis is AO),

(ii) 4OE1F1
∼= 4OE2F2 (giving the congruence of the circles).
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We first note that (i) and (ii) are equivalent. Indeed, because OP = OQ, (ii) is equivalent
to just the similarity 4OE1F1 ∼ 4OE2F2, and then by the spiral similarity lemma (or
even just angle chasing) we have (i) ⇐⇒ (ii).

We now present five proofs, two of (i) and three of (ii). Thus, we are essentially
presenting five different solutions.

Proof of (i) by angle chasing Note that

]F2E2O = ]QE2O = ]QNO = ]MNO = ]MAO = ]F2AO

and hence E2OAF2 is cyclic. Similarly, E1OAF1 is cyclic.

Proof of (i) by Simson lines Since P , M , N are collinear, we see that PMN is the
Simson line of O with respect to 4AE1F1.

Proof of (ii) by butterfly theorem By butterfly theorem on the three chords AC,
PQ, PQ, it follows that E1N = NE2. Thus

E1P =
√
E1A · E1C =

√
E2A · E2C = E2P.

But also OP = OQ and hence 4OPE1
∼= 4OQE2. Similarly for the other pair.

Proof of (ii) by projective geometry Let T = PP ∩ QQ. Let S be on PQ with
ST ‖ AC; then TS ⊥ ON , and it follows ST is the polar of N (it passes through T by
La Hire).

Now,

−1 = (PQ;NT )
T
= (E1E2;N∞)

with ∞ = AC ∩ ST the point at infinity. Hence E1N = NE2 and we can proceed as in
the previous solution.

Remark. The assumption that 4ABC is acute is not necessary; it is only present to
ensure that P lies on segment E1F1 and Q lies on segment E2F2, which may be helpful
for contestants. The argument presented above is valid in all configurations. When one
of ∠B and ∠C is a right angle, some of the points E1, F1, E2, F2 lie at infinity; when
one of them is obtuse, both P and Q lie outside segments E1F1 and E2F2 respectively.

Proof of (ii) by complex numbers We will give using complex numbers on 4ABC a
proof that |E1P | = |E2Q|.

We place APBCQ on the unit circle. Since PQ ‖ BC, we have pq = bc. Also, the
midpoint of AB lies on PQ, so

p+ q =
a+ b

2
+

(
a+ b

2

)
· pq

=
a+ b

2
+
a+ b

2ab
· bc

=
a(a+ b)

2a
+
c(a+ b)

2a

=
(a+ b)(a+ c)

2a
.

11
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Now,

p− e1 = p− pp(a+ c)− ac(p+ p)

pp− ac

=
p(p2 − p(a+ c) + ac)

pp− ac
=

(p− a)(p− c)
p2 − ac

.

|PE1|2 = (p− e1) · p− e1 =
(p− a)(p− c)

p2 − ac
·

(1p −
1
a)(1p −

1
c )

1
p2
− 1

ac

= −(p− a)2(p− c)2

(p2 − ac)2
.

Similarly,

|QE2|2 = −(q − a)2(q − c)2

(q2 − ac)2
.

But actually, we claim that

(p− a)(p− c)
p2 − ac

=
(q − a)(q − c)

(q2 − ac)2
.

One calculates

(p− a)(p− c)(q2 − ac) = p2q2 − pq2a− pq2c+ q2ac− p2ac+ pa2c+ pac2 − (ac)2

Thus (p− a)(p− c)(q2 − ac)− (q − a)(q − c)(p2 − ac) is equal to

−(a+ c)(pq)(q − p) + (q2 − p2)ac− (p2 − q2)ac+ ac(a+ c)(p− q)
= (p− q) [(a+ c)pq − 2(p+ q)ac+ ac(a+ c)]

= (p− q)
[
(a+ c)bc− 2 · (a+ b)(a+ c)

2a
· ac+ ac(a+ c)

]
= (p− q)(a+ c) [bc− c(a+ b) + ac] = 0.

This proves |E1P | = |E2Q|. Together with the similar |F1P | = |F2Q|, we have proved
(ii).

Authorship comments Ankan provides an extensive dialogue at https://aops.com/

community/c6h1664170p10571644 of how he came up with this problem, which at first
was intended just to be an AMC-level question about an equilateral triangle. Here, we
provide just the change-log of the versions of this problem.

0. (Original version) Let ABC be an equilateral triangle with side 2 inscribed in circle
ω, and let P be a point on small arc AB of its circumcircle. The tangent line to ω
at P intersects lines AC and AB at E and F . If PE = PF , find EF . (Answer: 4.)

1. (Generalize to isosceles triangle) Let ABC be an isosceles triangle with AB = AC,
and let M be the midpoint of BC. Let P be a point on the circumcircle with
PA = PM . The tangent to the circumcircle at P intersects lines AC and AB at
E and F , respectively. Show that PE = PF .

2. (Block coordinate bashes) Let ABC be an isosceles triangle with AB = AC and
circumcircle ω, and let M be the midpoint of BC. Let P be a point on ω with
PA = PM . The tangent to ω at P intersects lines AC and AB at E and F ,
respectively. Show that the circumcircle of 4AEF passes through the center of ω.
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3. (Delete isosceles condition) Let ABC be a triangle with circumcircle ω, and let H
be the foot of the altitude from A to BC. Let P be a point on ω with PA = PH.
The tangent to ω at P intersects lines AC and AB at E and F , respectively. Show
that the circumcircle of 4AEF passes through the center of ω.

4. (Add in both tangents) Let ABC be an acute triangle with circumcircle ω, and let
H be the foot of the altitude from A to BC. Let P and Q be the points on ω with
PA = PH and QA = QH. The tangent to ω at P intersects lines AC and AB at
E1 and F1 respectively; the tangent to ω at Q intersects lines AC and AB at E2

and F2 respectively. Show that E1F1 = E2F2.

5. (Merge v3 and v4 ) Let ABC be an acute triangle with circumcircle ω, and let H
be the foot of the altitude from A to BC. Let P and Q be the points on ω with
PA = PH and QA = QH. The tangent to ω at P intersects lines AC and AB
at E1 and F1 respectively; the tangent to ω at Q intersects lines AC and AB at
E2 and F2 respectively. Show that the circumcircles of 4AE1F1 and 4AE2F2 are
congruent, and the line through their centers is parallel to the tangent to ω at A.

The problem bears Evan’s name only because he suggested the changes v2 and v5.

§2.3 TSTST Problem 6, by Ray Li

Let S = {1, . . . , 100}, and for every positive integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements of S red,
then at least half of the n-tuples in Tn have an even number of coordinates with red
elements.

We claim this holds exactly for n even.

First solution by generating functions Define

R(x) =
∑
s red

xs, B(x) =
∑
s blue

xs.

(Here “blue” means “not-red”, as always.) Then, the number of tuples in Tn with exactly
k red coordinates is exactly equal to(

n

k

)
· 1

100

∑
ω

R(ω)kB(ω)n−k

13
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where the sum is over all primitive 100th roots of unity. So, we conclude the number of
tuples in Tn with an even (resp odd) number of red elements is exactly

X =
1

100

∑
ω

∑
k even

(
n

k

)
R(ω)kB(ω)n−k

Y =
1

100

∑
ω

∑
k odd

(
n

k

)
R(ω)kB(ω)n−k

=⇒ X − Y =
1

100

∑
ω

(B(ω)−R(ω))n

=
1

100

(B(1)−R(1))n +
∑
ω 6=1

(2B(ω))n


=

1

100

[
(B(1)−R(1))n − (2B(1))n + 2n

∑
ω

B(ω)n

]
=

1

100
[(B(1)−R(1))n − (2B(1))n] + 2nZ

=
1

100
[(−50)n − 50n] + 2nZ.

where

Z
def
=

1

100

∑
ω

B(ω)n ≥ 0

counts the number of tuples in Tn which are all blue. Here we have used the fact that
B(ω) +R(ω) = 0 for ω 6= 1.

We wish to show X −Y ≥ 0 holds for n even, but may fail when n is odd. This follows
from two remarks:

• If n is even, then X − Y = 2nZ ≥ 0.

• If n is odd, then if we choose the coloring for which s is red if and only if s 6≡ 2
(mod 4); we thus get Z = 0. Then X − Y = − 2

100 · 50n < 0.

Second solution by strengthened induction and random coloring We again prove that
n even work. Let us define

Tn(a) = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ a (mod 100)} .

Also, call an n-tuple good if it has an even number of red elements. We claim that Tn(a)
also has at least 50% good tuples, by induction.

This follows by induction on n ≥ 2. Indeed, the base case n = 2 can be checked by
hand, since T2(a) = {(x, a− x) | x ∈ S}. With the stronger claim, one can check the case
n = 2 manually and proceed by induction to go from n− 2 to n, noting that

Tn(a) =
⊔

b+c=a

Tn−2(b)⊕ T2(c)

where ⊕ denotes concatenation of tuples, applied set-wise. The concatenation of an
(n− 2)-tuple and 2-tuple is good if and only if the both or neither are good. Thus for
each b and c, if the proportion of Tn−2(b) which is good is p ≥ 1

2 and the proportion of
T2(c) which is good is q ≥ 1

2 , then the proportion of Tn−2(b) ⊕ T2(c) which is good is

14
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pq + (1− p)(1− q) ≥ 1
2 , as desired. Since each term in the union has at least half the

tuples good, all of Tn(a) has at least half the tuples good, as desired.
It remains to fail all odd n. We proceed by a suggestion of Yang Liu and Ankan

Bhattacharya by showing that if we pick the 75 elements randomly, then any particular
tuple in Sn has strictly less than 50% chance of being good. This will imply (by linearity
of expectation) that Tn (or indeed any subset of Sn) will, for some coloring, have less
than half good tuples.

Let (a1, . . . , an) be such an n-tuple. If any element appears in the tuple more than
once, keep discarding pairs of that element until there are zero or one; this has no effect
on the good-ness of the tuple. If we do this, we obtain an m-tuple (b1, . . . , bm) with no
duplicated elements where m ≡ n ≡ 1 (mod 2). Now, the probability that any element
is red is 3

4 , so the probability of being good is

m∑
k even

(
m

k

)(
3

4

)k (
−1

4

)m−k
=

1

2

[(
3

4
+

1

4

)m
−
(

3

4
− 1

4

)m]
=

1

2

[
1−

(
1

2

)m]
<

1

2
.

Remark (Adam Hesterberg). Here is yet another proof that n even works. Group
elements of Tn into equivalence classes according to the n/2 sums of pairs of consecutive
elements (first and second, third and fourth, . . . ). For each such pair sum, there are at
least as many monochrome pairs with that sum as nonmonochrome ones, since every
nonmonochrome pair uses one of the 25 non-reds. The monochromaticity of the pairs is
independent.

If pi ≤ 1
2 is the probability that the ith pair is nonmonochrome, then the probability

that k pairs are nonmonochrome is the coefficient of xk in f(x) =
∏
i(xpi + (1 − pi)).

Then the probability that evenly many pairs are nonmonochrome (and hence that evenly
many coordinates are red) is the sum of the coefficients of even powers of x in f , which
is (f(1) + f(−1))/2 = (1 +

∏
i(1− 2pi))/2 ≥ 1

2 , as desired.
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§3 Solutions to Day 3

§3.1 TSTST Problem 7, by Ashwin Sah

Let n be a positive integer. A frog starts on the number line at 0. Suppose it makes a
finite sequence of hops, subject to two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.

• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either direction,
left or right.)

Let S be the sum of the (positive) lengths of all hops in the sequence. What is the
maximum possible value of S?

We claim the answer is 4n−1
3 .

We first prove the bound. First notice that the hop sizes are in {20, 21, . . . , 2n−1}, since
the frog must stay within bounds the whole time. Let ai be the number of hops of size
2i the frog makes, for 0 ≤ i ≤ n− 1.

Claim. For any k = 1, . . . , n we have

an−1 + · · ·+ an−k ≤ 2n − 2n−k.

Proof. Let m = n− k and look modulo 2m. Call a jump small if its length is at most
2m−1, and large if it is at least 2m; the former changes the residue class of the frog modulo
2m while the latter does not.

Within each fixed residue modulo 2m, the frog can make at most 2n

2m − 1 large jumps.
So the total number of large jumps is at most 2m

(
2n

2m − 1
)

= 2n − 2m.

(As an example, when n = 3 this means there are at most four hops of length 4, at
most six hops of length 2 or 4, and at most seven hops total. Of course, if we want to
max the length of the hops, we see that we want a2 = 4, a1 = 2, a0 = 1, and in general
equality is achieved when am = 2m for any m.)

Now, the total distance the frog travels is

S = a0 + 2a1 + 4a2 + · · ·+ 2n−1an−1.

We rewrite using the so-called “summation by parts”:

S = a0 + a1 + a2 + a3 + . . .+ an−1

+ a1 + a2 + a3 + . . .+ an−1

+ 2a2 + 2a3 + . . .+ 2an−1

+ 4a3 + . . .+ 4an−1
...

. . .
...

+ 2n−2an−1.

Hence

S ≤ (2n − 20) + (2n − 21) + 2(2n − 22) + · · ·+ 2n−2(2n − 2n−1)

=
4n − 1

3

16
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It remains to show that equality can hold. There are many such constructions but most
are inductive. Here is one approach. We will construct two family of paths such that
there are 2k hops of size 2k, for every 0 ≤ k ≤ n− 1, and we visit each of {0, . . . , 2n − 1}
once, starting on 0 and ending on x, for the two values x ∈ {1, 2n − 1}.

The base case n = 1 is clear. To take a path from 0 to 2n+1 − 1.

• Take a path on {0, 2, 4, . . . , 2n+1− 2} starting from 0 and ending on 2 (by inductive
hypothesis).

• Take a path on {1, 3, 5, . . . , 2n+1 − 1} starting from 1 and ending on 2n+1 − 1 (by
inductive hypothesis).

• Link them together by adding a single jump 2→ 1.

The other case is similar, but we route 0→ (2n+1 − 2)→ (2n+1 − 1)→ 1 instead. (This
can also be visualized as hopping along a hypercube of binary strings; each inductive
step takes two copies of the hypercube and links them together by a single edge.)

Remark (Ashwin Sah). The problem can also be altered to ask for the minimum value
of the sum of the reciprocals of the hop sizes, where further we stipulate that the frog
must hit every point precisely once (to avoid triviality). With a nearly identical proof
that also exploits the added condition a0 + · · ·+ an−1 = 2n − 1, the answer is n. This
yields a nicer form for the generalization. The natural generalization changes the above
problem by replacing 2k with ak where ak|ak+1, so that the interval covered by hops is
of size an and the hop sizes are restricted to the ai, where a0 = 1. In this case, similar
bounding yields

2n−1∑
i=1

1

bk
≥

n−1∑
i=0

(
ak+1

ak
− 1

)
.

Bounds for the total distance traveled happen in the same way as the solution above,
and equality for both can be constructed in an analogous fashion.

§3.2 TSTST Problem 8, by Ankan Bhattacharya and Evan Chen

For which positive integers b > 2 do there exist infinitely many positive integers n such
that n2 divides bn + 1?

This problem is sort of the union of IMO 1990/3 and IMO 2000/5.
The answer is any b such that b+ 1 is not a power of 2. In the forwards direction, we

first prove more carefully the following claim.

Claim. If b+ 1 is a power of 2, then the only n which is valid is n = 1.

Proof. Assume n > 1 and let p be the smallest prime dividing n. We cannot have p = 2,
since then 4 | bn + 1 ≡ 2 (mod 4). Thus,

b2n ≡ 1 (mod p)

so the order of b (mod p) divides gcd(2n, p− 1) = 2. Hence p | b2 − 1 = (b− 1)(b+ 1).
But since b+ 1 was a power of 2, this forces p | b− 1. Then 0 ≡ bn + 1 ≡ 2 (mod p),

contradiction.

On the other hand, suppose that b+ 1 is not a power of 2 (and that b > 2). We will
inductively construct an infinite sequence of distinct primes p0, p1, . . . , such that the
following two properties hold for each k ≥ 0:

17
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• p20 . . . p
2
k−1pk | bp0...pk−1 + 1,

• and hence p20 . . . p
2
k−1p

2
k | bp0...pk−1pk + 1 by exponent lifting lemma.

This will solve the problem.
Initially, let p0 be any odd prime dividing b+ 1. For the inductive step, we contend

there exists an odd prime q /∈ {p0, . . . , pk} such that q | bp0...pk + 1. Indeed, this
follows immediately by Zsigmondy theorem since p0 . . . pk divides bp0...pk−1 + 1. Since
(bp0...pk)q ≡ bp0...pk (mod q), it follows we can then take pk+1 = q. This finishes the
induction.

To avoid the use of Zsigmondy, one can instead argue as follows: let p = pk for brevity,
and let c = bp0...pk−1 . Then cp+1

c+1 = cp−1 − cp−2 + · · ·+ 1 has GCD exactly p with c+ 1.
Moreover, this quotient is always odd. Thus as long as cp + 1 > p · (c+ 1), there will be
some new prime dividing cp + 1 but not c+ 1. This is true unless p = 3 and c = 2, but
we assumed b > 2 so this case does not appear.

Remark (On new primes). In going from n2 | bn + 1 to (nq)2 | bnq + 1, one does not
necessarily need to pick a q such that q - n, as long as νq(n

2) < νq(b
n + 1). In other

words it suffices to just check that bn+1
n2 is not a power of 2 in this process.

However, this calculation is a little more involved with this approach. One proceeds
by noting that n is odd, hence ν2(b

n + 1) = ν2(b+ 1), and thus bn+1
n2 = 2ν2(b+1) ≤ b+ 1,

which is a little harder to bound than the analogous cp + 1 > p · (c+ 1) from the previous
solution.

Authorship comments I came up with this problem by simply mixing together the
main ideas of IMO 1990/3 and IMO 2000/5, late one night after a class. On the other
hand, I do not consider it very original; it is an extremely “routine” number theory
problem for experienced contestants, using highly standard methods. Thus it may not
be that interesting, but is a good discriminator of understanding of fundamentals.

IMO 1990/3 shows that if b = 2, then the only n which work are n = 1 and n = 3.
Thus b = 2 is a special case and for this reason the problem explicitly requires b > 2.

An alternate formulation of the problem is worth mentioning. Originally, the problem
statement asked whether there existed n with at least 3 (or 2018, etc.) prime divisors, thus
preventing the approach in which one takes a prime q dividing bn+1

n2 . Ankan Bhattacharya
suggested changing it to “infinitely many n”, which is more natural.

These formulations are actually not so different though. Explicitly, suppose k2 | bk + 1
and p | bk + 1. Consider any k | n with n2 | bn + 1, and let p be an odd prime dividing
bk + 1. Then 2νp(n) ≤ νp(bn + 1) = νp(n/k) + νp(b

k + 1) and thus

νp(n/k) ≤ νp
(
bk + 1

k2

)
.

Effectively, this means we can only add each prime a certain number of times.

§3.3 TSTST Problem 9, by Linus Hamilton

Show that there is an absolute constant c < 1 with the following property: whenever P
is a polygon with area 1 in the plane, one can translate it by a distance of 1

100 in some
direction to obtain a polygon Q, for which the intersection of the interiors of P and Q
has total area at most c.

18



USA TSTST for 60th IMO and 8th EGMO Evan Chen

The following solution is due to Brian Lawrence. We will prove the result with the
generality of any measurable set P (rather than a polygon). For a vector v in the plane,
write P + v for the translate of P by v.

Suppose P is a polygon of area 1, and ε > 0 is a constant, such that for any translate
Q = P + v, where v has length exactly 1

100 , the intersection of P and Q has area at least
1− ε. The problem asks us to prove a lower bound on ε.

Lemma

Fix a sequence of n vectors v1, v2, . . . , vn, each of length 1
100 . A grasshopper starts

at a random point x of P , and makes n jumps to x+ v1 + · · ·+ vn. Then it remains
in P with probability at least 1− nε.

Proof. In order for the grasshopper to leave P at step i, the grasshopper’s position before
step i must be inside the difference set P\(P − vi). Since this difference set has area at
most ε, the probability the grasshopper leaves P at step i is at most ε. Summing over the
n steps, the probability that the grasshopper ever manages to leave P is at most nε.

Corollary

Fix a vector w of length at most 8. A grasshopper starts at a random point x of P,
and jumps to x+ w. Then it remains in P with probability at least 1− 800ε.

Proof. Apply the previous lemma with 800 jumps. Any vector w of length at most 8 can
be written as w = v1 + v2 + · · ·+ v800, where each vi has length exactly 1

100 .

Now consider the process where we select a random starting point x ∈ P for our
grasshopper, and a random vector w of length at most 8 (sampled uniformly from the
closed disk of radius 8). Let q denote the probability of staying inside P we will bound q
from above and below.

• On the one hand, suppose we pick w first. By the previous corollary, q ≥ 1− 800ε
(irrespective of the chosen w).

• On the other hand, suppose we pick x first. Then the possible landing points x+w
are uniformly distributed over a closed disk of radius 8, which has area 64π. The
probability of landing in P is certainly at most [P]

64π .

Consequently, we deduce

1− 800ε ≤ q ≤ [P]

64π
=⇒ ε >

1− [P]
64π

800
> 0.001

as desired.

Remark. The choice of 800 jumps is only for concreteness; any constant n for which
π(n/100)2 > 1 works. I think n = 98 gives the best bound following this approach.
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