Team Selection Test for the 60th International Mathematical Olympiad

United States of America

Day I

Thursday, December 6, 2018

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems, but do not discuss them with anyone until Monday, December 10 at noon Eastern time.

IMO TST 1. Let ABC be a triangle and let M and N denote the midpoints of \overline{AB} and \overline{AC} , respectively. Let X be a point such that \overline{AX} is tangent to the circumcircle of triangle ABC. Denote by ω_B the circle through M and B tangent to \overline{MX} , and by ω_C the circle through N and C tangent to \overline{NX} . Show that ω_B and ω_C intersect on line BC.

IMO TST 2. Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo n (hence $\mathbb{Z}/n\mathbb{Z}$ has n elements). Find all positive integers n for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions

$$g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x$$

are all bijections on $\mathbb{Z}/n\mathbb{Z}$.

IMO TST 3. A snake of length k is an animal which occupies an ordered k-tuple (s_1, \ldots, s_k) of cells in an $n \times n$ grid of square unit cells. These cells must be pairwise distinct, and s_i and s_{i+1} must share a side for $i = 1, \ldots, k - 1$. If the snake is currently occupying (s_1, \ldots, s_k) and s is an unoccupied cell sharing a side with s_1 , the snake can move to occupy $(s, s_1, \ldots, s_{k-1})$ instead. The snake has turned around if it occupied (s_1, s_2, \ldots, s_k) at the beginning, but after a finite number of moves occupies $(s_k, s_{k-1}, \ldots, s_1)$ instead. Determine whether there exists an integer n > 1 such that one can place some snake of length at least $0.9n^2$ in an $n \times n$ grid which can turn around.

Team Selection Test for the 60th International Mathematical Olympiad

United States of America

Day II

Thursday, January 17, 2019

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems, but do not discuss them with anyone until Monday, January 21 at noon Eastern time.

IMO TST 4. We say a function $f: \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \to \mathbb{Z}$ is great if for any nonnegative integers m and n,

$$f(m+1, n+1)f(m, n) - f(m+1, n)f(m, n+1) = 1.$$

If $A = (a_0, a_1, ...)$ and $B = (b_0, b_1, ...)$ are two sequences of integers, we write $A \sim B$ if there exists a great function f satisfying $f(n, 0) = a_n$ and $f(0, n) = b_n$ for every nonnegative integer n (in particular, $a_0 = b_0$).

Prove that if A, B, C, and D are four sequences of integers satisfying $A \sim B$, $B \sim C$, and $C \sim D$, then $D \sim A$.

IMO TST 5. Let n be a positive integer. Tasty and Stacy are given a circular necklace with 3n sapphire beads and 3n turquoise beads, such that no three consecutive beads have the same color. They play a cooperative game where they alternate turns removing three consecutive beads, subject to the following conditions:

- Tasty must remove three consecutive beads which are turquoise, sapphire, and turquoise, in that order, on each of his turns.
- Stacy must remove three consecutive beads which are sapphire, turquoise, and sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with Tasty going first, they can also win with Stacy going first.

IMO TST 6. Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^{\circ}$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at point A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to the circumcircle of $\triangle DB_1C_1$.