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Problems
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?
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(Nathan Ramesh and Palmer Mebane)

G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)
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Solutions
A1. Let 0 < k < 1

2 be a real number and let a0 and b0 be arbitrary real numbers in
(0, 1). The sequences (an)n≥0 and (bn)n≥0 are then defined recursively by

an+1 =
an + 1

2
and bn+1 = bkn

for n ≥ 0. Prove that an < bn for all sufficiently large n.

(Michael Ma)

It should be clear that both sequences converge to 1. In the first sequence, the distance
from 1 is halved every time and converges to 0. In the second sequence bn = bk

n

0 and
since kn converges to 0, bi converges to 1.

The key lemma to solve the problem is the following:

Lemma. If k < 1
2 then there exists 0 < x0 < 1 such that whenever x0 < x < 1,

xk >
2k + 1

4
x+

3− 2k

4
.

Proof. First notice that if we take the tangent to y = xk at (1, 1) we get the equation
y = kx+ (1− k). We can see by taking the first derivative of

kx+ (1− k)− xk

to get
k − kxk−1

which is negative as kx + (1 − k) − xk is decreasing from 0 to 1. Furthermore xk is
concave and increasing from 0 to 1. Now it if we take a line of higher slope than k passing
through (1, 1) for large enough x the line will fall under xk.

Now let x0 be as above, and let a = 2k+1
4 < 1

2 for convenience. Now we can see that

bn+1 > abn + (1− a).

Take the smallest M such that aM and bM are both larger than x0. By iterating both
recurrences we can see that for ` = 0, 1, . . . we have

aM+` = 1−
(

1

2

)`
(1− aM ) and bM+` > 1− a`(1− bM ).

Since 1
2a > 1 we can take a sufficiently large positive integer `0 such that

(
1
2a

)`0 > 1−bM
1−aM .

Then taking N = M + `0 we are done since bN > aN and

xk > ax+ (1− a) >
x+ 1

2

for x > x0.
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A2. Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

(Ashwin Sah)

The answer is f(x) = kx+ ` where k and ` are any real numbers with k ≥ 0.
We begin with some weird optimizations:

• Since f can be shifted by a constant, we get f(0) = 0.

• Put c = 0 and b = −a to get f(a3) + f(−a3) = 0, so that f is odd.

• Put c = 0 now to get f(a3) + f(b3) ≥ 0 whenever a+ b ≥ 0. Combined with f odd,
this implies f is weakly increasing.

Now, we let c = −a− b to get:

f(a3) + f(b3) + f(−(a+ b)3) = 3f(−ab(a+ b))

Using oddness and rearranging:

f(a3) + f(b3) + 3f(ab(a+ b)) = f((a+ b)3)

Call this property P (a, b).

Lemma. f(2km) = 2kf(m) for all integer k and real m > 0.

Proof. P (d1/3, d1/3) gives 2f(d) + 3f(2d) = f(8d). Consider the sequence αk = f(2km).
We have a linear recurrence: αk+3 = 3αk+1 + 3αk. Its characteristic equation has roots
2,−1,−1, so we have f(2km) = αk = c12

k + c2(−1)k + c3(−1)kk for some c1, c2, c3 that
may depend on m but not on k. This can be extended to negative k as well. Note
that since f(x) is increasing and f(0) = 0, αk ≥ 0 for all k. Now, if either c2 or c3
is nonzero, you can take k → −∞ with the right parity, and you will get αk < 0, a
contradiction. Thus c2 = c3 = 0, so f(2km) = c12k. Plugging in k = 0, we get c1 = f(m),
so f(2km) = 2kf(m) as desired.

Lemma. f(φ3km) = φ3kf(m) for all integer k and real m > 0.

Proof. P (d1/3, φd1/3) gives f(d)+4f(φ3d) = f(φ6d). Again, this gives a linear recurrence
for the sequence βk = φ3km, βk+2 = 4βk+1 + βk. Its characteristic equation has roots
φ3,−φ−3, so we have f(φ3km) = βk = c4φ

3k+c5(−φ−3)k for some c4, c5 that may depend
on m but not on k. As before, c5 must be zero, so f(φ3km) = c4φ

3k. Plugging in k = 0,
c4 = f(m), so f(φ3km) = φ3kf(m) as desired.

Now I claim that f(x) = f(1)x for all x. Since f is odd, we only need to prove this
for positive x. If f(1) = 0, we are done by Lemma 1. Otherwise, for a contradiction, let
f(n) 6= f(1)n for some n > 0. (note that f(n) ≥ 0). Let f(n) > f(1)n; the case where
f(n) < f(1)n is similar. By Dirichlet’s approximation theorem, we can find r, s such
that:

n <
2s

φ3r
<
f(n)

f(1)
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or, expanding,
φ3rn < 2s =⇒ φ3rf(n) > 2sf(1)

But, by Lemmas 1 and 2:

f(φ3rn) = φ3rf(n) and f(2s) = 2sf(1)

a contradiction to the fact that f is increasing. Thus, f(x) = f(1)x for all x. Re-adjusting
for the assumption that f(0) = 0, f(x) is linear. Plugging back in to the condition, f(x)
can be any linear function with a nonnegative coefficient of x.
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C1. Let m and n be fixed distinct positive integers. A wren is on an infinite chessboard
indexed by Z2, and from a square (x, y) may move to any of the eight squares (x±m, y±n)
or (x± n, y ±m). For each {m,n}, determine the smallest number k of moves required
for the wren to travel from (0, 0) to (1, 0), or prove that no such k exists.

(Michael Ren)

Sorry, the answer we had originally was wrong. The user talkon gives an answer of:

• If gcd(m,n) > 1 then no such sequence exists.

• If m ≡ n ≡ 1 (mod 2) then no such sequence exists.

• Otherwise, suppose m is even. Then the answer is

max{2p,m}+ max{q, n}

where p ≥ 0 is minimal such that 2mp ≡ ±1 (mod n), and q is 2pm±1
n , whichever

is the smallest integer.

(The obvious guess k = m+n is not correct.) See https://artofproblemsolving.com/

community/c6h1472063.
This problem is actually known already. The question was raised by Alasdair Iain

Houston in the 1970s, with members of the Fairy Chess Correspondence Circle. It
appeared in print in George Jelliss’s paper Theory of Leapers in Chessics 24, 1985.
(Chessics was a fairy chess and recreational mathematics journal published and edited by
Jelliss; issue 24 is available https://www.mayhematics.com/p/p.htm and the discussion
of Houston’s problem begins page 96.)
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C2. The edges of K2017 are each labelled with 1, 2, or 3 such that any triangle has sum
of labels at least 5. Determine the minimum possible average of all

(
2017
2

)
labels.

(Michael Ma)

In general, the answer for 2m+ 1 is 2− 1
2m+1 .

We prove the lower bound by induction on m: assume some edge vw is labeled 1.
Then we delete it, noting that edges touching v and w contribute a sum of at least
4 · (2m− 1) = 8m− 4. Thus by induction hypothesis the total is at least(

2m− 1

2

)(
2− 1

2m− 1

)
+ (8m− 4) + 1 =

(
2m+ 1

2

)(
2− 1

2m+ 1

)
as desired.

Interestingly, there are (at least) two equality cases. One is to have all edges be 2
except for m disjoint edges, which have weight 1. Another is to split the vertex set into
two sets A ∪ B with |A| = m and |B| = m + 1, then weight all edges in A × B with 1
and the remaining edges with 3.

Remark. In fact, given any equality case on c vertices, one can generate one on c+ 2
vertices by two vertices u and v, connected to the previous c vertices with weight 2, and
then equipping uv with weight 1.
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C3. Consider a finite binary string b with at least 2017 ones. Show that one can insert
some plus signs in between pairs of digits such that the resulting sum, when performed
in base 2, is equal to a power of two.

(David Stoner)

Solution by Mihir Singhal:
We first note that, given any binary string with n ones, we can achieve any integer

value in the range [n, 3n2 ] as follows: first, put pluses between every digit. Then, remove
the plus directly after every other 1. Doing this one at a time gives everything from n to
3n
2 .

Now we prove the result for n ≥ 17. Let n be the number of ones. If any power of 2 is in
the range [n, 3n2 ], then we are done already. Otherwise, we must have 2α + 1 ≤ n < 2α+2

3
for some integer α. We claim that 2α+1 is achievable via the following algorithm:

0. Put pluses in between every digit, so that we have a current sum n.

1. Cut off the part of the string from the fourth to right 1 onwards; call this the tail,
and the rest the head.

2. Starting at the leftmost ungrouped 1, group that one with the two digits immediately
following it.

3. Repeat step 2 until the sum is ≥ 2α+1.

4. Adjust the result until the sum is exactly 2α+1.

We first show that the condition in 3 occurs before step 2 becomes impossible. Note
that since there are at least 13 ones in the head, at least four full groups can be
attained before step 2 becomes problematic. Note that the group transformations take
1 + 1 + 1→ 7, 1 + 0 + 1→ 5, 1 + 1 + 0→ 6, 1 + 0 + 0→ 4. In particular, the sum value
v becomes ≥ 2v + 1. Suppose that ` is the number of leftover ones in the tail after all
possible groups have been formed in the manner described, and g is the number of groups
formed. The sum at this point is at least:

2(n− `− 4) + g + `+ 4 = 2n+ g − `− 4

Since g ≥ 4 and ` ≤ 2, this is at least 2n − 2 ≥ 2α+1. So, the condition in step 3 will
indeed arise before step 2 becomes impossible.

Now we clarify step 4. Suppose that on the formation of group 1 + b0 + b1 →
4 + 2b0 + b1 the sum first becomes ≥ 2α+1. If it equals 2α+1, we are done. Otherwise,
since every grouping increases the sum by at most 4, the beforehand sum is in the set
{2α+1 − 3, 2α+1 − 2, 2α+1 − 1}.

• If the sum is 2α+1 − 3, then change 1 + b0 to 1b0 and the tail sum from 4 to 6
(possibly by the lemma).

• If the sum is 2α+1 − 2, then change the tail sum from 4 to 6.

• If the sum is 2α+1 − 1, then change the tail sum from 4 to 5.

In any case, a final sum of 2α+1 is attained, as desired.
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C4. nicκy is drawing kappas in the cells of a square grid. However, he does not want
to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all
real numbers d > 0 such that for every positive integer n, nicκy can label at least dn2

cells of an n× n square.

(Mihir Singhal and Michael Kural)

Solution by Yevhenii Diomidov, Kada Williams and Mihir Singhal:
The answer is d ≤ 1

2 . The construction consists of placing kappas in all squares of the
forms (2k, 4`), (2k, 4`+ 1), (2k + 1, 4`+ 2), and (2k + 1, 4`+ 3).

To prove that this is minimal, consider all connected components consisting of squares
that contain kappas that are connected via edges. It is easy to see that there are only
five different kinds of connected components.

Extend each connected component into a larger figure as shown below:

Due to the fact that there are no three kappas in a line and due to the nature of the
extensions, one can see that after extension, the interiors of the figures remain disjoint.
However, note that the extended area of each figure is at least twice its original area (it
is exactly twice except for the 2 by 2 square, for which it is 9

4 times the original area).
Some of the extended regions may fall outside the square, but this is fine since the error
is at most O(n).

Thus, Nicky can cover at most n2

2 +O(n) of the squares with kappas, which is what
we wanted to show.
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C5. There are n MOPpers p1, . . . , pn designing a carpool system to attend their
morning class. Each pi’s car fits χ(pi) people (χ : {p1, . . . , pn} → {1, 2, . . . , n}). A c-fair
carpool system is an assignment of one or more drivers on each of several days, such that
each MOPper drives c times, and all cars are full on each day. (More precisely, it is a
sequence of sets (S1, . . . , Sm) such that |{k : pi ∈ Sk}| = c and

∑
x∈Sj χ(x) = n for all i,

j.)
Suppose it turns out that a 2-fair carpool system is possible but not a 1-fair carpool

system. Must n be even?

(Nathan Ramesh and Palmer Mebane)

First solution (Palmer Mebane) Let n = 5 · 220 + 215 − 1 which is odd. For all but 15
people, set χ(x) = n. Biject the 15 people to two element subsets of {1, 2, 3, 4, 5, 6}, and
construct a complete graph K6 where 1 to 6 are the vertices and each person {i, j} is
an edge from i to j. There are 15 perfect matchings (so 3 edges) on K6. Number these
matchings from 0 to 14, and assign each edge the matching numbers it’s a part of, so
each person/edge has 3 matching numbers assigned to them. If the three numbers for
person pi are x, y, z, set χ(pi) = 220 + 2x + 2y + 2z. We claim this is 2-fair but not 1-fair.

It is 2-fair because we can take 6 sets Si such that Si contains all people whose subsets
are of the form {i, j} for some j 6= i. This is because the 15 matching numbers assigned
to 5 people all incident to the same vertex are distinct; that’s how matchings work.

However it is not 1-fair, because we constructed χ so that those sets Si are the only
ways to choose a subset of people whose χ values sum to n. The 5 · 220 term in n forces
us to choose exactly 5 people. Then each of these 5 people comes with three matching
numbers, and the only way to get the 215 − 1 term by summing 15 powers of 2 is to sum
20 + 21 + · · ·+ 214. So our 5 people have to be assigned each matching number from 0 to
14 exactly once between them. But if the edges we choose don’t all come from the same
vertex, then two of the edges will be in the same matching, so that matching number is
repeated and we can’t get 15 powers of 2 to sum to 215 − 1.

Second solution (Krit Boonsiriseth) Here is a counterexample with n = 23: the
capacities are 24, 73, 32, 83, 17, 18, 239. It is not 1-fair since the 17 needs either all the
2’s or all the 3’s while the 18 needs a 2 and a 3. However, a 2-fair carpool system is:

• 2 + 2 + 2 + 17

• 2 + 7 + 7 + 7

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 7 + 8 + 8

• 2 + 3 + 18

• 3 + 3 + 17

• eighteen 23’s.
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G1. Let ABC be a triangle with orthocenter H, and let M be the midpoint of BC.
Suppose that P and Q are distinct points on the circle with diameter AH, different
from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies on the
circumcircle of 4ABC.

(Michael Ren)

We present seven different solutions.

First solution (Michael Ren) Let R be the intersection of (AH) and (ABC), and let
D, E, and F respectively be the orthocenter of APQ, the foot of the altitude from A to
PQ, and the reflection of D across E. Note that F lies on (AH) and E lies on (AM).
Let S and H ′ be the intersection of AH with BC and (ABC) respectively. Note that R
is the center of spiral similarity taking DEF to H ′SH, so D lies on (ABC), as desired.

Second solution (Vincent Huang, Evan Chen) Let DEF be the orthic triangle of
ABC. Let N and S be the midpoints of PQ and AH. Then MS is the diameter of the
nine-point circle, so since SN is the perpendicular bisector of PQ the point N lies on
the nine-point circle too. Now the orthocenter of 4APQ is the reflection of H across
N , hence lies on the circumcircle (homothety of ratio 2 takes the nine-point circle to
(ABC)).

Third solution (Zack Chroman) Let R be the midpoint of PQ, and X the point such
that (M,X;P,Q) = −1. Take E and F to be the feet of the B,C altitudes. Recall that
ME,MF are tangents to the circle (AH), so EF is the polar of M .

Then note that MP ·MQ = MX ·MR = ME2. Then, since X is on the polar of M ,
R lies on the nine-point circle — the inverse of that polar at M with power ME2. Then
by dilation the orthocenter 2~R− ~H lies on the circumcircle of ABC.

Fourth solution (Zack Chroman) We will prove the following more general claim which
implies the problem:

Claim. For a circle γ with a given point A and variable point B, consider a fixed point X
not on γ. Let C be the second intersection of XB and γ, then the locus of the orthocenter
of ABC is a circle

Proof. Complex numbers is straightforward, but suppose we want a more synthetic
solution. Let D be the midpoint of BC. If O is the center of the circle, ∠OMX = 90, so
M lies on the circle (OX). Then

H = 4O −A−B − C = 4O −A− 2D.

So H lies on another circle. (Here we can use complex numbers, vectors, coordinates,
whatever; alternatively we can use the same trick as above and say that H is the reflection
of a fixed point over D).
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Fifth solution (Kevin Ren) Let O be the midpoint of AH and N be the midpoint of
PQ. Let K be the orthocenter of APQ.

Because AP ⊥ KQ and KP ⊥ HP , we have KQ ‖ PH. Similarly, KP ‖ QH. Thus,
KPHQ is a parallelogram, which means KH and PQ share the same midpoint N .

Since N is the midpoint of chord PQ, we have ∠ONM = 90◦. Hence N lies on the
9-point circle. Take a homothety from H mapping N to K. This homothety maps the
9-point circle to the circumcircle, so K lies on the circumcircle.

Sixth solution (Evan Chen, complex numbers) We use complex numbers with (AHEF )
the unit circle, centered at N . Let a, e, f denote the coordinates of A, E, F , and hence
h = −a. Since M is the pole of EF , we have m = 2ef

e+f . Now, the circumcenter O of

4ABC is given by o = 2ef
e+f + a, due to the fact that ANMO is a parallelogram.

The unit complex numbers p and q are now known to satisfy

p+ q =
2ef

e+ f
+

2pq

e+ f

so

(a+ p+ q)− o =
2pq

e+ f
and a− o =

2ef

e+ f

which clearly have the same magnitude. Hence the orthocenter of 4APQ and A are
equidistant from O.

Seventh solution (Evan Chen, complex numbers) Here is another complex solution
using (APQ) as the unit circle. We let the fourth point M satisfy m + pqm = p + q.
Moreover, let D be the reflection of H across M ; we wish to show a+ p+ q lies on the
circle with diameter AD. This is:

(a+ p+ q)− a
(a+ p+ q)− (2m− h)

=
p+ q

p+ q − 2m(
p+ q

p+ q − 2m

)
=

1
p + 1

q
1
p + 1

q − 2m
=

p+ q

p+ q − 2pqm

=
p+ q

p+ q − 2(p+ q −m)
=

p+ q

2m− p− q
.
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G2. Let ABC be a scalene triangle with ∠A = 60◦. Let E and F be the feet of the
angle bisectors of ∠ABC and ∠ACB respectively, and let I be the incenter of 4ABC.
Let P , Q be distinct points such that 4PEF and 4QEF are equilateral. If O is the
circumcenter of 4APQ, show that OI ⊥ BC.

(Vincent Huang)

WLOG assume AB < AC. Also suppose P is on the same side of EF as A, so that
A,P,E, F are concyclic. Basic angle-chasing tells us ∠EIF = 120◦, hence I lies on the
same circle as A,E, F, P .

Let the circumcircle of 4BFI meet BC again at point Q′. By Miquel’s Theorem
on 4ABC and points Q′, EF we have that Q′, I, C,E are concyclic. Hence ∠EQ′F =
∠EQ′I + ∠FQ′I = ∠ECI + ∠FBI = 1

2(∠B + ∠C) = 60◦, implying that E,F,Q,Q′ are
concyclic.

Since ∠FEI = ∠FAI = 30◦ = 1
2∠FEQ and FE = EQ, we know that F,Q are

reflections about BI, so since F ∈ AB we have Q ∈ BC. Now since I must lie on
the perpendicular bisector of QQ′, we deduce that if X is the midpoint of QQ′, then
IX ⊥ BC.

Since AP is the exterior angle bisector of ∠BAC it’s well-known that AP,EF,BC
concur at a point R, hence RA · RP = RE · RF = RQ · RQ′, implying A,P,Q,Q′ are
concyclic, hence OX ⊥ BC =⇒ OI ⊥ BC as desired.
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19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

G3. Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle
with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most
(n/2)2 scribable pairs.

(Daniel Liu)

The main point is to show that there are no triangles in the graph of scribable pairs,
after which Turan’s theorem finishes the proof. This is essentially Poncelet porism but
we give a direct proof.

Suppose there exist three circles A,B,C with radii a, b, c respectively (with a > b >
c > 0) such that (A,B), (B,C), (A,C) are scribable. Then by triangle inequality and
Euler’s formula, we have√

a(a− 2b) +
√
b(b− 2c) ≥

√
a(a− 2c).

However note that√
a(a− 2c)−

√
a(a− 2b) =

√
a(2b− 2c)√

a− 2c+
√
a− 2b

>

√
a(2b− 2c)√
a+
√
a

= b− c

and √
b(b− 2c) ≤

√
b2 − 2bc+ c2 = b− c

establishing a contradiction.
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19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

G4. Let ABC be an acute triangle with incenter I and circumcircle ω. Suppose a circle
ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2, C2 are the points on ω opposite to
B, C, respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

(Vincent Huang and Nathan Weckwerth)

Solution by Ankan:
Let MB and NB be the midpoints of the minor and major arcs AC, and define MC

and NC similarly. It’s well known that I = NBB1 ∩NCC1.
The case where O = I is left to the reader as an exercise. If O 6= I, Pascal on

MBBB2C1NCMC and MCCC2B1NBMB give MBMC∩C1B2 ∈ OI and MBMC∩B1C2 ∈
OI, so X = B1C2 ∩ C1B2 ∈MBMC .

But this is equivalent to XA = XI, so done. (One way to see this is to let IA, IB , and
IC be the A-, B-, and C-excenters of 4ABC, and consider the homothety with ratio 1

2
centered at I; it takes IBIC to MBMC .)
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19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

N1. Let a1, a2, . . . , an be positive integers with product P , where n is an odd positive
integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 gcd(a1, . . . , an)n.

(Daniel Liu)

The inequality is homogenous, so we may assume gcd(a1, . . . , an) = 1. Then we want
to show

gcd(an1 + P, . . . , ann + P ) ≤ 2.

So it suffices to show that neither 4 nor any odd prime divides the gcd.
First, let p be an odd prime. Suppose that p | ani +P for all i. Then ani ≡ −P (mod p),

so multiplying this for all i, we get Pn ≡ −Pn (mod p). Then we see that p | P , so p
divides ani for each i, contradiction.

If p = 4, similarly 2 | P and 2 | ani for each i, contradiction.

18



19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

N2. An integer n > 2 is called tasty if for every ordered pair of positive integers (a, b)
with a+ b = n, at least one of a

b and b
a is a terminating decimal. Do there exist infinitely

many tasty integers?

(Vincent Huang)

The answer is no. (In fact, a computation implies that n = 21 is the largest one.)
First, we recall the well-known fact that the fraction a

b , with gcd(a, b) = 1, is terminating
if and only if the prime factorization of b consists only of 2s and 5s.

Consider some tasty number n and all pairs (a, b) with a+b = n, gcd(a, n) = 1, a ≤ 0.5n.
It’s clear that there are 0.5φ(n) of these pairs, and since gcd(a, b) = 1 we must have that
at least one of a and b has a prime factorization of only 2s and 5s.

But considering all numbers 2x5y ≤ n, we know x ≤ log2 n + 1, y ≤ log5 n + 1,
hence there are at most (log2 n + 1)(log5 n + 1) such numbers, so we deduce that
(log2 n+ 1)(log5 n+ 1) ≥ 0.5φ(n).

Lemma. For every n > 2, φ(n) ≥ 0.5
√
n.

Proof. Decompose n into prime powers peii . For each pi > 2, it’s easy to show that
pei−1i (p − 1) ≥

√
peii . For pi = 2, we can show that pei−1i (p − 1) ≥ 0.5

√
peii , hence

multiplying these bounds gives the desired.

Therefore, for n to be tasty, we need (log2 n + 1)(log5 n + 1) ≥ 0.25
√
n, which only

holds for finitely many n as desired.
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19th ELMO 2017 (Pittsburgh, PA) Shortlisted Problems (Evan Chen et al)

N3. For each integer C > 1, decide whether there exists pairwise distinct positive
integers a1, a2, a3, . . . such that for every k ≥ 1,

akk+1 divides Cka1a2 . . . ak.

(Daniel Liu)

No sequence exists for any C. Note that the divisibility is homogenous with respect to
the ai so we can shift the sequence and WLOG assume that a1 = 1.

Note that any prime divisor of the ai must also be a prime divisor of C. Let

C = pc11 p
c2
2 . . . pckk

be the prime factorization of C.

Claim. Fix p = pj and c = cj . Then for any index k we have

νp(ai) ≤ cHk + νp(a1).

Proof. Let bi = νp(ai). We apply strong induction: Base case of k = 1 is trivial. Now
assume bi ≤ Hi−1c+ b1 for i ≤ k; then

bk+1 ≤ c+

∑k
i=1 bi
k

≤ c+

∑k
i=1Hi−1c+ b1

k

= c

(
1 +

∑k
i=1Hi−1
k

)
+ b1

= c

(
1 +

k−1
1 + k−2

2 + · · ·+ 1
k−1

k

)
+ b1

= c

(
1 +

k − 1

k · 1
+
k − 2

k · 2
+ · · ·+ 1

(k − 1) · k

)
+ b1

= c

(
1 +

1

1
− 1

k
+

1

2
− 1

k
+ · · ·+ 1

k − 1
− 1

k

)
+ b1

= cHk + b1

and the induction is complete.

Now, let N be a positive integer, and let m = 1 + maxj νpj (a1). We have that

νpjai ≤ cjHi + νpj (a1) ≤ cj(m+ logN)

if i ≤ N . Hence, there are at most

k∏
j=1

[1 + cj(m+ logN)] = O
(

(logN)k
)

possible k-triples that (νp1ai, νp2ai, . . . , νpkai) can be. But this also needs to be at least
N + 1, which is impossible for large N .
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