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OFFICIAL SOLUTIONS

1. Cookie Monster says a positive integer n is crunchy if there exist 2n real numbers
x1, x2, . . . , x2n, not all equal, such that the sum of any n of the xi’s is equal to the
product of the other n of the xi’s. Help Cookie Monster determine all crunchy integers.

Proposed by Yannick Yao.

Answer. The crunchy numbers are exactly the even integers n = 2, 4, 6, . . . .

Solution. Notice that

2n∏
i=1

xn = (xa1 + xa2 + . . .+ xan)(xan+1 + xan+2 + . . .+ xa2n)

where the ai are any permutation of 1 − 2n. Switching an and an+1 in the formula
and setting both sides to be equal we get an equation that factors into

(xan − xan+1)
[
(xa1 + xa2 + . . .+ xan−1)− (xan+2 + xan+3 + . . .+ xa2n)

]
= 0.

Since not all of the numbers are equal we can see that if any two are not equal then
the other 2n − 2 must be equal by permuting ai in the above equation. Also one of
these two must share the same value as these 2n − 2 by the same logic. So WLOG
x1 = x2 = . . . = x2n−1 = x and a2n = y. So we end up with the equations

nx = xn−1y (n− 1)x+ y = xn.

Notice x 6= 0 or else y would also be 0. Substituting y = n
xn−2 into the second equation,

clearing denominators, and factoring gives us

(xn−1 − n)(xn−1 + 1) = 0.

If x = n−1
√
n then y would also be n−1

√
n. Thus, n− 1 must be odd and then n must

be even. Say n is even. Then setting x1 = x2 = . . . = x2n−1 = −1 and x2n = n clearly
works and we are done �

This problem was proposed by Yannick Yao. This solution was given by Michael Ma.

2. Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle ABC
and a point D such that DB and DC are tangent to the circumcircle of ABC. Let
B′ be the reflection of B over AC and C ′ be the reflection of C over AB. If O is the
circumcenter of DB′C ′, help Oscar prove that AO is perpendicular to BC.
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Proposed by James Lin.

Solution 1. LetN denote the circumcenter of ABC and let S denote the circumcenter
of NBDC (midpoint of ND). Let T be the point such that ANST is a parallelogram
(hence ASDT too). We will prove that T = O, which implies the result (since
NSD ⊥ BC).

A

B C

D

B′

C′

S

T N

First we claim that 4B′CD ∼ 4TSD, with equal orientation. By angle chasing, we
have

]TSD = ]ANS = ](AN,BC) + 90◦ = (]NAC + ]ACB) + 90◦

= (90◦ − ]CBA) + ]ACB + 90◦ = 2]ACB + ]BAC

= ]B′CA+ ]ACB + ]BCD = ]B′CD.

Finally from isosceles 4DBC ∼ 4SBN , we have

B′C

CD
=
BC

CD
=
BN

NS
=
NA

NS
=
TS

SD
.

This implies the similarity.

Similarly, 4C ′BD ∼ 4TSD. Then there is a spiral similarity sending 4DBC to
4DB′C ′, and sending S to T . As S is the circumcenter of 4DBC, T is the circum-
center of 4DB′C ′, meaning T = O. �

This first solution was suggested by Evan Chen.

Solution 2. First, note that triangles DBC ′ and DCB′ are congruent and in the
same orientation, so DB′C ′ is similar to DBC. Now, let the circumcircle of DB′C ′

intersect DB at P and DC at Q. We have that ∠C ′PB = ∠C ′PD = ∠C ′B′D =
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∠CBD = ∠BAC = ∠C ′AB, so P lies on the circumcircle of ABC ′. Furthermore,
∠ABP = ∠ACB = ∠AC ′B = ∠APB, so AP = AB. Similarly, AQ = AC. Now, let
X and Y be on DB and DC so that AD = AX = AY .

The key lemma is that given varying points D and E on fixed rays AB and AC
such that AD − AE is constant. Then the circumcenter of ADE lies on a fixed line
parallel to the angle bisector of ∠BAC. The proof of this is that all circumcircles of
ADE share a common midpoint of arc DAE, call it Z, by spiral similarity, so the
circumcenter of ADE lies on the perpendicular bisector of AZ, which is a fixed line
parallel to the angle bisector.

Now, we use this lemma on rays DB and DC. Note that since triangles ADX, ABP ,
ADY , and ACQ are all isosceles, DX −DP = XP = DB = DC = Y Q = DY −DQ,
so we have that DX −DY = DP −DQ. Now, note that the circumcenter of DPQ is
O and the circumcenter of DXY is A, so the line through them is perpendicular to
BC by the lemma, as desired. �

This second solution was suggested by Michael Ren.

This problem was proposed by James Lin.

3. In a Cartesian coordinate plane, call a rectangle standard if all of its sides are parallel
to the x- and y- axes, and call a set of points nice if no two of them have the same
x- or y- coordinates. First, Bert chooses a nice set B of 2016 points in the coordinate
plane. To mess with Bert, Ernie then chooses a set E of n points in the coordinate
plane such that B ∪ E is a nice set with 2016 + n points. Bert returns and then
miraculously notices that there does not exist a standard rectangle that contains at
least two points in B and no points in E in its interior. For a given nice set B that
Bert chooses, define f(B) as the smallest positive integer n such that Ernie can find
a nice set E of size n with the aforementioned properties. Help Bert determine the
minimum and maximum possible values of f(B).

Proposed by Yannick Yao.

Solution 1. The minimum is 2015, since there needs to be a point in J whose x-
coordinate is between each two consecutive points in A when sorted by x-coordinate.
The minimum is achieved when A = {(t, t)|t = 0, 1, · · · , 2015}.
For general |A| = c (instead of 2016) the maximum is 2c− 2

√
c

To keep things clean, I will let c = k2 where k is a positive integer. The construction,
as mentioned above is to take a k by k square and rotate it slightly.

Now to show that 2c− 2k suffices, consider the set of points in A as a poset where for
points p, q, p > q if p is up and right of q.

Take the longest antichain and say it has s elements. This antichain is actually an up
left chain of points. Partition the remaining points into two sets, those that are > than
some element in the antichain and those that are < some element in the antichain.
For the first set, Ernie draws points slightly below and left of each point and Ernie
draws points slightly above and right of each point in the second set.
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In total Ernie has drawn k2 − s points. (We have eliminated all possible rectangles
where the two points in A form an up right vector since these two points cannot both
be in the antichain)

Now we can do the same for up left rectangles. To finish the problem it suffices to
note Dilworth’s theorem and use AM-GM. �

This first solution was suggested by Allen Liu.

Solution 2. Here is an alternative way to show the maximum. As above, the number
of points needed for J is equal to

• Twice the number of points,

• minus the length of the maximal down-right chain, and

• minus the length of the maximal up-right chain.

If we order the points by their x-coordinate and consider a sequence being their
y-coordinates, the two things we are subtracting becomes the length of maximal de-
creasing subsequence and the length of maximal increasing subsequence respectively.
Notice that if the two lengths are m and n respectively, then the number of points
is at most mn, because of the famous result that a sequence of mn + 1 distinct real
numbers must either contain an increasing subsequence of length m+1 or a decreasing
subsequence of length n+ 1.

Therefore, in the context of this particular case, we have mn ≥ 2016 and we need to
maximize 2 · 2016−m− n, and this is easy by AM-GM, and the maximized result is
2 · 2016− d2

√
2016e = 3942.

This maximum is achieved by having a slightly tilted 42× 48 lattice grid for A. �

4. Big Bird has a polynomial P with integer coefficients such that n divides P (2n)
for every positive integer n. Prove that Big Bird’s polynomial must be the zero
polynomial.

Proposed by Ashwin Sah.

Solution. We claim P (2k) = 0 for every positive integer k, which is enough. Indeed,
for p prime we have

0 ≡ P (2kp) ≡ P (2k) (mod p)

since 2kp ≡ 2k (mod p), so the claim follows by taking p sufficiently large. �

This problem and solution were proposed by Ashwin Sah.

5. Elmo is drawing with colored chalk on a sidewalk outside. He first marks a set S of
n > 1 collinear points. Then, for every unordered pair of points {X,Y } in S, Elmo
draws the circle with diameter XY so that each pair of circles which intersect at two
distinct points are drawn in different colors. Count von Count then wishes to count
the number of colors Elmo used. In terms of n, what is the minimum number of colors
Elmo could have used?

Proposed by Michael Ren.
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Answer. The answer is dn/2e colors, except when n = 3 here the answer is 1.

Solution. I claim that the answer for even n is n/2. We can let the distance between
adjacent points be 1. Label the vertices 1, 2, 3, . . . , n/2, 1, 2, . . . , n/2 in that order, left
to right (we can assume that the line the points are on is horizontal).

Now, consider the n/2 circles whose diameters have endpoints with the same label.
Note that these are pairwise intersecting, so we must use at least n/2 colors.

For the coloring, for circles with diameter ≤ n/2, color them with the label of the
right endpoint of the diameter. For circles with diameter ≥ n/2, color them with the
label of the left endpoint of the diameter. By checking cases, it is not hard to confirm
that this coloring works.

Now we consider n = 2m+ 1 odd. Obviously n = 3 gives 1. For other n = 2m+ 1 we
will show the minimum number of colors is m+ 1. We can construct this by using the
above construction, and coloring each circle containing 2m+ 1 with the color m+ 1.

Now, for proving it, call the vertices 1, 2, . . . ,m,m+ 1, 1, 2, . . . ,m as earlier; we have
the m different colored circles from vertices of the same color. Let f(a, b) denote the
color of the circle with vertex color a in the first m + 1 vertices, and vertex color b
in the last m + 1 vertices. Note that f(1,m + 1) = 1. f(2, 1) = 1, 2, but we know it
is 2 due to the previous conclusion. Similarly, we show that f(k + 1, k) = k + 1 for
1 ≤ k ≤ m, so in particular, we need f(m+ 1,m) = m+ 1, as desired. �

This problem was proposed by Michael Ren. This solution was given by Mihir Singhal
and James Lin.

Remark. An alternate easier version of the problem requires that circles which are
tangent to each other are also distinct colors. In this case the answer is n.

Label the vertices 1, 2, . . . n, and let f(a, b) be the circle with diameter at vertices a, b.
Note that f(1, 2), f(1, 3), . . . , f(1, n), f(2, n) are different colors, so at least n colors
are needed. But then we can let f(a, b) be colored by color a+ b (mod n), so we are
done!

6. Elmo is now learning olympiad geometry. In a triangle ABC with AB 6= AC, let
its incircle be tangent to sides BC, CA, and AB at D, E, and F , respectively. The
internal angle bisector of ∠BAC intersects lines DE and DF at X and Y , respectively.
Let S and T be distinct points on side BC such that ∠XSY = ∠XTY = 90◦. Finally,
let γ be the circumcircle of 4AST .

(a) Help Elmo show that γ is tangent to the circumcircle of 4ABC.

(b) Help Elmo show that γ is also tangent to the incircle of 4ABC.

Proposed by James Lin.

Solution 1. First, we claim that X and Y are the incenter and excenter of 4AST .
(This is Sharygin 2013, Problem 18, also problem 11.12 of Euclidean Geometry in
Mathematical Olympiads.) To see this, recall that ∠AXB = ∠AY C are right angles
(see for example JMO 2014 problem 6). Now let K = AXY ∩ BC and let L be the
foot of the external ∠A-bisector. Then (KL;BC) = −1, so projection onto AI gives
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(AK;XY ) = −1. Now, since ∠Y SX = 90◦, we see that SX and SY are bisectors of
∠AST . The same statement holds for ∠ATS, which proves the claim.

A

B C

I

D

E

F

X

Y

M

S T

In particular, this implies that AS and AT are isogonal to each other, and therefore
part (a) is solved.

As for part (b), denote (XSTY ) by ω, centered at a point M , which is midpoint of
arc ST of γ. Now, we observe that 4IXD ∼ 4IDY , therefore ID2 = IX · IY and
thus the incircle is orthogonal to ω. Therefore an inversion around ω fixes the incircle.
Now γ is mapped to line BC, which is obviously tangent to incircle. Therefore γ was
tangent too. �

This first solution was suggested by Evan Chen.

Solution 2. Here is an alternate solution to part (b).

Let the A-excircle of ABC be tangent to AB at R and BC at S. It is well-known that
X lies on RS and Y lies on DE. Hence, by some angle-chasing ARX and AY E are
similar (both have angles ∠A2 ,

∠B
2 , 90 + ∠C

2 ), so we have that AR · AE = AX · AY =

AS · AT . Hence, a
√
bc inversion on AST swaps the incircle and A-excircle of ABC.

But it also swaps the circumcircle of AST and ST . Since the incircle and A-excircle
of ABC are both tangent to ST , or BC, both are also tangent to the circumcircle of
AST , as desired. �

This second solution was suggested by Michael Ren..
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Solution 3. We also claim (AST ) is tangent to the A-excircle.

It’s well-known and you can prove with angle-chasing that X,Y are the feet of the
perpendiculars from B,C to AI, where I is the incenter.

Let M be the midpoint of BC and N be the midpoint of XY . Clearly MN ⊥ XY so
we get that N lies on the radical axis of the incircle and A-excircle, and it is obvious
that N is the center of the circle of diameter XY .

Note that IX ⊥ BX. Let B′ be the midpoint of DF , so that B,B′ correspond in
inversion about the incircle. Thus, if X ′ is the image of X under inversion about the
incircle, we should have that ∠IB′X ′ = 90◦ so that X ′ lies on DF . Then it’s clear
that X ′ = Y so X,Y are inverses under inversion about the incircle.

Now this means that (XY ) is orthogonal to the incircle. Note that since N is on the
radical axis of the incircle and A-excircle, P (N, incircle) = P (N,A-excircle) = NX
which means (XY ) is also orthogonal to the A-excircle.

Now let Z be the foot of the A-angle bisector. We claim that (AZ), (XY ) are orthog-
onal. It suffices to show (A,Z;X,Y ) is harmonic. Let Z ′ be the foot of the A-external
angle bisector. Project (A,Z;X,Y ) from ∞AZ′ down to line BC so it follows that
(A,Z;X,Y ) = (Z ′, Z;B,C) which is clearly harmonic. Then (AZ), (XY ) are orthog-
onal as claimed. But then it follows that A,Z are also inverses in inversion about
circle (XY ).

Now invert (AST ) about (XY ). Clearly S, T remain fixed while A goes to Z so (AST )
and line BC are inverses. This can only happen if (AST ) passes through N , the center
of inversion. Then A,S, T,N are concyclic. Now it also follows from this inversion
that since the incircle and excircle remain fixed, the image of (AST ) is tangent to
both circles, so (AST ) was tangent to the incircle and A-excircle.

Now note that N is the midpoint of arc ST on (AST ) because NS = NT . But then
it follows that ∠SAN = ∠TAN . Since ∠BAN = ∠CAN we deduce that AS,AT are
isogonal w.r.t. ∠BAC.

Let O1 be the circumcenter of AST and H be the orthocenter of ABC. Then AH,AO
are isogonal in triangle ABC but AH,AO1 are isogonal in triangle AST so we deduce
that A,O,O1 are collinear. Then it follows that (AST ) is tangent to the circumcircle
of ABC as desired. �

This third solution was suggested by Vincent Huang.

This problem was proposed by James Lin.

7


