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Algebra Problem Shortlist ELMO 2013

Algebra

A1*
A1*

Find all triples (f, g, h) of injective functions from R to R satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (x) 6= F (y) whenever x 6= y.)

Evan Chen

A2
A2

Prove that for all positive reals a, b, c,

1

a+ 1
b + 1

+
1

b+ 1
c + 1

+
1

c+ 1
a + 1

≥ 3
3
√
abc+ 1

3√
abc

+ 1
.

David Stoner

A3
A3

Find all f : R→ R such that for all x, y ∈ R, f(x) + f(y) = f(x+ y) and f(x2013) = f(x)2013.

Calvin Deng

A4
A4

Positive reals a, b, and c obey a2+b2+c2

ab+bc+ca = ab+bc+ca+1
2 . Prove that

√
a2 + b2 + c2 ≤ 1 +

|a− b|+ |b− c|+ |c− a|
2

.

Evan Chen

A5*
A5*

Let a, b, c be positive reals satisfying a+ b+ c = 7
√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Evan Chen
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A6
A6

Let a, b, c be positive reals such that a+ b+ c = 3. Prove that

18
∑
cyc

1

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

David Stoner

A7*
A7*

Consider a function f : Z→ Z such that for every integer n ≥ 0, there are at most 0.001n2 pairs of integers
(x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible that for some integer n ≥ 0,
there are more than n integers a such that f(a) 6= a · f(1) and |a| ≤ n?

David Yang

A8*
A8*

Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that(∑
a(a2 + bc)

)(∑(
a

b
+
b

a

))
≥
(∑√

(a+ 1)(a3 + bc)
)(∑√

a(a+ 1)(a+ bc)
)
.

David Stoner

A9
A9

Let a, b, c be positive reals, and let 2013

√
3

a2013+b2013+c2013 = P . Prove that

∏
cyc

(
(2P + 1

2a+b )(2P + 1
a+2b )

(2P + 1
a+b+c )

2

)
≥
∏
cyc

(
(P + 1

4a+b+c )(P + 1
3b+3c )

(P + 1
3a+2b+c )(P + 1

3a+b+2c )

)
.

David Stoner
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Combinatorics

C1
C1

Let n ≥ 2 be a positive integer. The numbers 1, 2, . . . , n2 are consecutively placed into squares of an n× n,
so the first row contains 1, 2, . . . , n from left to right, the second row contains n+ 1, n+ 2, . . . , 2n from left
to right, and so on. The magic square value of a grid is defined to be the number of rows, columns, and

main diagonals whose elements have an average value of n
2+1
2 . Show that the magic-square value of the grid

stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of
the columns. (The operations can be used multiple times, and in any order.)

Ray Li

C2
C2

Let n be a fixed positive integer. Initially, n 1’s are written on a blackboard. Every minute, David picks two
numbers x and y written on the blackboard, erases them, and writes the number (x+y)4 on the blackboard.

Show that after n− 1 minutes, the number written on the blackboard is at least 2
4n2−4

3 .

Calvin Deng

C3*
C3*

Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote the number
of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum possible value of A?

Ray Li

C4
C4

Let n be a positive integer. The numbers {1, 2, . . . , n2} are placed in an n × n grid, each exactly once.
The grid is said to be Muirhead-able if the sum of the entries in each column is the same, but for every
1 ≤ i, k ≤ n− 1, the sum of the first k entries in column i is at least the sum of the first k entries in column
i+ 1. For which n can one construct a Muirhead-able array?

Evan Chen
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C5
C5

There is a 2012× 2012 grid with rows numbered 1, 2, . . . 2012 and columns numbered 1, 2, . . . , 2012, and we
place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has
a positive integer thickness. (in micrometers!)

(a) Show that there exist 20122 unique integers ai,j where i, j ∈ [1, 2012] such that for all x, y ∈ [1, 2012],
the sum

x∑
i=1

y∑
j=1

ai,j

is equal to the sum of the thicknesses of all the napkins that cover the grid square in row x and column
y.

(b) Show that if we use at most 500, 000 napkins, at least half of the ai,j will be 0.

Ray Li

C6
C6

A 4 × 4 grid has its 16 cells colored arbitrarily in three colors. A swap is an exchange between the colors
of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry,
regardless of the grid’s initial coloring.

Matthew Babbitt

C7*
C7*

A 22013 + 1 by 22013 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words,
for every positive integer n > 1, there do not exist pairwise distinct black squares s1, s2, . . . , sn such that
si, si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1). What is the maximum possible number of filled
black squares?

David Yang

C8
C8

There are 20 people at a party. Each person holds some number of coins. Every minute, each person who
has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that
A gives B a coin and B gives A a coin at the same time.) Suppose that this process continues indefinitely.
That is, for any positive integer n, there exists a person who will give away coins during the nth minute.
What is the smallest number of coins that could be at the party?

Ray Li
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C9*
C9*

f0 is the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each i > 1, let
fi(x, y) be the remainder when

fi−1(x, y) +

1∑
j=−1

1∑
k=−1

fi−1(x+ j, y + k)

is divided by 2.

For each i ≥ 0, let ai =
∑

(x,y)∈Z2 fi(x, y). Find a closed form for an (in terms of n).

Bobby Shen

C10*
C10*

Let N ≥ 2 be a fixed positive integer. There are 2N people, numbered 1, 2, . . . , 2N , participating in a tennis
tournament. For any two positive integers i, j with 1 ≤ i < j ≤ 2N , player i has a higher skill level than
player j. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court
among N courts, numbered 1, 2, . . . , N .

During a round, each player plays against the other person assigned to his court (so that exactly one match
takes place per court), and the player with higher skill wins the match (in other words, there are no upsets).
Afterwards, for i = 2, 3, . . . , N , the winner of court i moves to court i − 1 and the loser of court i stays on
court i; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court N .

Find all positive integers M such that, regardless of the initial pairing, the players 2, 3, . . . , N + 1 all change
courts immediately after the Mth round.

Ray Li
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Geometry

G1
G1

Let ABC be a triangle with incenter I. Let U , V and W be the intersections of the angle bisectors of angles
A, B, and C with the incircle, so that V lies between B and I, and similarly with U and W . Let X, Y ,
and Z be the points of tangency of the incircle of triangle ABC with BC, AC, and AB, respectively. Let
triangle UVW be the David Yang triangle of ABC and let XY Z be the Scott Wu triangle of ABC. Prove
that the David Yang and Scott Wu triangles of a triangle are congruent if and only if ABC is equilateral.

Owen Goff

G2
G2

Let ABC be a scalene triangle with circumcircle Γ, and let D,E,F be the points where its incircle meets
BC, AC, AB respectively. Let the circumcircles of 4AEF , 4BFD, and 4CDE meet Γ a second time at
X,Y, Z respectively. Prove that the perpendiculars from A,B,C to AX,BY,CZ respectively are concurrent.

Michael Kural

G3
G3

In 4ABC, a point D lies on line BC. The circumcircle of ABD meets AC at F (other than A), and the
circumcircle of ADC meets AB at E (other than A). Prove that as D varies, the circumcircle of AEF always
passes through a fixed point other than A, and that this point lies on the median from A to BC.

Allen Liu

G4*
G4*

Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and AC again at
S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect ω at D and E,
respectively. The internal angle bisector of ∠BDE meets line ER at K. Prove that if BE = BR, then
∠ELK = 1

2∠BCD.

Evan Chen

G5
G5

Let ω1 and ω2 be two orthogonal circles, and let the center of ω1 be O. Diameter AB of ω1 is selected so
that B lies strictly inside ω2. The two circles tangent to ω2, passing through O and A, touch ω2 at F and
G. Prove that FGOB is cyclic.

Eric Chen
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G6
G6

Let ABCDEF be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define X =
AB ∩DE, Y = BC ∩ EF , and Z = CD ∩ FA. Prove that

XY

XZ
=
BE

AD

sin |∠B − ∠E|
sin |∠A− ∠D|

.

Victor Wang

G7*
G7*

Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect ω at D and E
respectively. Let O1 be the center of the circle through D tangent to AC at C, and let O2 be the center
of the circle through E tangent to AB at B. Prove that O1, O2, and the nine-point center of ABC are
collinear.

Michael Kural

G8
G8

Let ABC be a triangle, and let D, A, B, E be points on line AB, in that order, such that AC = AD and
BE = BC. Let ω1, ω2 be the circumcircles of 4ABC and 4CDE, respectively, which meet at a point
F 6= C. If the tangent to ω2 at F cuts ω1 again at G, and the foot of the altitude from G to FC is H, prove
that ∠AGH = ∠BGH.

David Stoner

G9
G9

Let ABCD be a cyclic quadrilateral inscribed in circle ω whose diagonals meet at F . Lines AB and CD
meet at E. Segment EF intersects ω at X. Lines BX and CD meet at M , and lines CX and AB meet at
N . Prove that MN and BC concur with the tangent to ω at X.

Allen Liu

G10*
G10*

Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner
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G11
G11

Let 4ABC be a nondegenerate isosceles triangle with AB = AC, and let D,E, F be the midpoints of
BC,CA,AB respectively. BE intersects the circumcircle of 4ABC again at G, and H is the midpoint of
minor arc BC. CF ∩DG = I,BI ∩AC = J . Prove that ∠BJH = ∠ADG if and only if ∠BID = ∠GBC.

David Stoner

G12*
G12*

Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

G13
G13

In 4ABC, AB < AC. D and P are the feet of the internal and external angle bisectors of ∠BAC,
respectively. M is the midpoint of segment BC, and ω is the circumcircle of 4APD. Suppose Q is on
the minor arc AD of ω such that MQ is tangent to ω. QB meets ω again at R, and the line through R
perpendicular to BC meets PQ at S. Prove SD is tangent to the circumcircle of 4QDM .

Ray Li

G14
G14

Let O be a point (in the plane) and T be an infinite set of points such that |P1P2| ≤ 2012 for every two
distinct points P1, P2 ∈ T . Let S(T ) be the set of points Q in the plane satisfying |QP | ≤ 2013 for at least
one point P ∈ T .

Now let L be the set of lines containing exactly one point of S(T ). Call a line `0 passing through O bad if
there does not exist a line ` ∈ L parallel to (or coinciding with) `0.

(a) Prove that L is nonempty.

(b) Prove that one can assign a line `(i) to each positive integer i so that for every bad line `0 passing
through O, there exists a positive integer n with `(n) = `0.

David Yang
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Number Theory

N1
N1

Find all ordered triples of non-negative integers (a, b, c) such that a2 + 2b + c, b2 + 2c + a, and c2 + 2a + b
are all perfect squares.

Note: This problem was withdrawn from the ELMO Shortlist and used on ksun48’s mock AIME.

Matthew Babbitt

N2*
N2*

For what polynomials P (n) with integer coefficients can a positive integer be assigned to every lattice point
in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any n × n × n grid of lattice
points is divisible by P (n)?

Andre Arslan

N3
N3

Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct numbers of the form
ab, where a ∈ {3, 4, 5, 6} and b is a positive integer.

Matthew Babbitt

N4
N4

Find all triples (a, b, c) of positive integers such that if n is not divisible by any integer less than 2013, then
n+ c divides an + bn + n.

Evan Chen

N5*
N5*

Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and A1, A2, . . . , A2013 be 2013
(possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi−1} for i = 1, 2, . . . , 2013. Prove that there is a positive integer
N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Victor Wang
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N6*
N6*

Find all positive integers m for which there exists a function f : Z+ → Z+ such that

ff
f(n)(n)(n) = n

for every positive integer n, and f2013(m) 6= m. Here fk(n) denotes f(f(· · · f︸ ︷︷ ︸
k f ’s

(n) · · · )).

Evan Chen

N7*
N7*

Let p be a prime satisfying p2 | 2p−1 − 1, n be a positive integer, and f(x) = (x−1)p
n
−(xp

n
−1)

p(x−1) . Find

the largest positive integer N such that there exist polynomials g, h ∈ Z[x] and an integer r satisfying
f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

N8
N8

We define the Fibonacci sequence {Fn}n≥0 by F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2; we
define the Stirling number of the second kind S(n, k) as the number of ways to partition a set of n ≥ 1
distinguishable elements into k ≥ 1 indistinguishable nonempty subsets.

For every positive integer n, let tn =
∑n
k=1 S(n, k)Fk. Let p ≥ 7 be a prime. Prove that

tn+p2p−1 ≡ tn (mod p)

for all n ≥ 1.

Victor Wang
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A1* Algebra – Solutions ELMO 2013

A1*
Find all triples (f, g, h) of injective functions from R to R satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y. (We say a function F is injective if F (x) 6= F (y) whenever x 6= y.)

Evan Chen

Answer. For all real numbers x, f(x) = g(x) = h(x) = x+ C, where C is an arbitrary real number.

Solution 1. Let a, b, c denote the values f(0), g(0) and h(0). Notice that by putting y = 0, we can get that
f(x+ a) = g(x) + c, etc. In particular, we can write

h(y) = f(y − c) + b

and
g(x) = h(x− b) + a = f(x− b− c) + a+ b

So the first equation can be rewritten as

f(x+ f(y)) = f(x− b− c) + f(y − c) + a+ 2b.

At this point, we may set x = y − c− f(y) and cancel the resulting equal terms to obtain

f(y − f(y)− (b+ 2c)) = −(a+ 2b).

Since f is injective, this implies that y− f(y)− (b+ 2c) is constant, so that y− f(y) is constant. Thus, f is
linear, and f(y) = y + a. Similarly, g(x) = x+ b and h(x) = x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the equations, we get 2a = b+ c, 2b = c+a
and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x + C, where C is an arbitrary real. One can easily
verify these solutions are valid. �

This problem and solution were proposed by Evan Chen.

Remark. This is not a very hard problem. The basic idea is to view f(0), g(0) and h(0) as constants, and
write the first equation entirely in terms of f(x), much like we would attempt to eliminate variables in a
standard system of equations. At this point we still had two degrees of freedom, x and y, so it seems likely
that the result would be easy to solve. Indeed, we simply select x in such a way that two of the terms cancel,
and the rest is working out details.

Solution 2. First note that plugging x = f(a), y = b;x = f(b), y = a into the first gives g(f(a)) + h(b) =
g(f(b)) + h(a) =⇒ g(f(a)) − h(a) = g(f(b)) − h(b). So g(f(x)) = h(x) + a1 for a constant a1. Similarly,
h(g(x)) = f(x) + a2, f(h(x)) = g(x) + a3.

Now, we will show that h(h(x)) − f(x) and h(h(x)) − g(x) are both constant. For the second, just plug in
x = 0 to the third equation. For the first, let x = a3, y = k in the original to get g(f(h(k))) = h(a3) + f(k).
But g(f(h(k))) = h(h(k)) + a1, so h(h(k))− f(k) = h(a3)− a1 is constant as desired.

Now f(x)− g(x) is constant, and by symmetry g(x)−h(x) is also constant. Now let g(x) = f(x) + p, h(x) =
f(x) + q. Then we get:

f(x+ f(y)) = f(x) + f(y) + p+ q

f(x+ f(y) + p) = f(x) + f(y) + q − p
f(x+ f(y) + q) = f(x) + f(y) + p− q
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Now plugging in (x, y) and (y, x) into the first one gives f(x+ f(y)) = f(y+ f(x)) =⇒ f(x)−x = f(y)− y
from injectivity, f(x) = x + c. Plugging this in gives 2p = q, 2q = p, p + q = 0 so p = q = 0 and
f(x) = x+ c, g(x) = x+ c, h(x) = x+ c for a constant c are the only solutions. �

This second solution was suggested by David Stoner.
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A2
Prove that for all positive reals a, b, c,

1

a+ 1
b + 1

+
1

b+ 1
c + 1

+
1

c+ 1
a + 1

≥ 3
3
√
abc+ 1

3√
abc

+ 1
.

David Stoner

Solution. Let a = N x
y , b = N y

z and c = N z
x . Then

∑
cyc

1

a+ 1
b + 1

=
∑
cyc

y

Nx+ 1
N z + y

=
∑
cyc

y2

Nxy + 1
N yz + y2

≥ (x+ y + z)2

(xy + yz + zx)
(
N + 1

N

)
+ x2 + y2 + z2

=
(x+ y + z)2

(xy + yz + zx)
(
N + 1

N − 2
)

+ (x+ y + z)2

=
3

3 + 3(xy+yz+zx)
(x+y+z)2

(
N + 1

N − 2
)

≥ 3

3 +N + 1
N − 2

=
3

N + 1
N + 1

=
3

3
√
abc+ 1

3√
abc

+ 1
.

�

This problem and solution were proposed by David Stoner.
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A3
Find all f : R→ R such that for all x, y ∈ R, f(x) + f(y) = f(x+ y) and f(x2013) = f(x)2013.

Calvin Deng

Answer. f(x) = x, f(x) = −x, and f(x) ≡ 0.

Solution. WLOG f(1) ≥ 0 (since 2013 is odd); then f(1) = f(1)2013 =⇒ f(1) ∈ {0, 1}.
Hence for any reals x, y,

2013∑
k=0

(
2013

k

)
n2013−kf(x)kf(y)2013−k = [f(x) + nf(y)]2013

= f(x+ ny)2013

= f((x+ ny)2013)

=

2013∑
k=0

(
2013

k

)
n2013−kf(xky2013−k)

for all positive integers n, so viewing this as a polynomial identity in n we get f(x)kf(y)2013−k = f(xky2013−k)
for k = 0, 1, . . . , 2013.

If f(1) = 1, then k = 2 gives f(x2) = f(x)2 ≥ 0 which is enough to get f(x) = x for all x. Otherwise, if
f(1) = 0, then k = 1 gives f(x) = 0 for all x. �

This problem and solution were proposed by Calvin Deng.
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A4

Positive reals a, b, and c obey a2+b2+c2

ab+bc+ca = ab+bc+ca+1
2 . Prove that

√
a2 + b2 + c2 ≤ 1 +

|a− b|+ |b− c|+ |c− a|
2

.

Evan Chen

Solution 1. The given condition rearranges as 2(a2+b2+c2)−(ab+bc+ca) = (ab+bc+ca)2. Homogenizing,
this becomes:

|a− b|+ |b− c|+ |c− a|+ 2(ab+ bc+ ca)√
2(a2 + b2 + c2)− (ab+ bc+ ca)

≥ 2
√
a2 + b2 + c2.

An application of Holder’s inequality gives:

LHS2 ≥
(
(a− b)2 + (b− c)2 + (c− a)2 + 2(ab+ bc+ ca)

)3(∑
cyc(a− b)4 + 2(ab+ bc+ ca) (2(a2 + b2 + c2)− (ab+ bc+ ca))

)1
=

(2a2 + 2b2 + 2c2)3

2a4 + 2b4 + 2c4 + 4a2b2 + 4a2c2 + 4c2a2

=
8(a2 + b2 + c2)3

2(a2 + b2 + c2)2

= 4(a2 + b2 + c2)

Upon taking square roots of both sides we are done. �

This problem and solution were proposed by Evan Chen.

Solution 2. Let x = ab+ bc+ ca, so 1 ≤ a2+b2+c2

x = x+1
2 implies x ≥ 1. If α = a− b, β = b− c, γ = c− a,

WLOG with α, β ≥ 0 (or equivalently a ≥ b ≥ c), then because α+ β + γ = 0, we have

2(α2 + αβ + β2) = α2 + β2 + γ2 = 2x
x+ 1

2
− 2x = x(x− 1),

and we want to minimize |α|+ |β|+ |γ| = 2(α+ β). But (α+ β)2 ≥ α2 +αβ + β2 implies α+ β ≥
√

x(x−1)
2 ,

with equality attained for some choice of (a, b, c) precisely when αβ = 0 and (α + β)β ≤ x (since c ≥ 0).

In particular, β = 0 works for any fixed x ≥ 1, so the problem is equivalent to
√

x(x+1)
2 ≤ 1 +

√
x(x−1)

2 for

x ≥ 1, which is easy after squaring both sides. �

This second solution was suggested by Victor Wang.
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A5*
Let a, b, c be positive reals satisfying a+ b+ c = 7

√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.

Evan Chen

Solution 1. By weighted AM-GM we have that

1 =
∑
cyc

(
7
√
a

a+ b+ c

)
=
∑
cyc

(
a

a+ b+ c
· 1

7
√
a6

)

≥
(

1

aabbcc

) 6/7
a+b+c

.

Rearranging yields aabbcc ≥ 1. �

This problem and solution were proposed by Evan Chen.

Remark. The problem generalizes easily to n variables, and exponents other than 1
7 . Specifically, if positive

reals x1 + · · ·+xn = xr1 + · · ·+xrn for some real number r 6= 1, then
∏
i≥1 x

xi
i ≥ 1 if and only if r < 1. When

r ≤ 0, a Jensen solution is possible using only the inequality a+ b+ c ≥ 3.

Solution 2. First we claim that a, b, c < 5. Assume the contrary, that a ≥ 5. Let f(x) = x − 7
√
x. Since

f ′(x) > 0 for x ≥ 5, we know that f(a) ≥ 5− 7
√

5 > 3. But this means that WLOG b− 7
√
b < −1.5, which is

clearly false since b− 7
√
b ≥ 0 for b ≥ 1, and b− 7

√
b ≥ − 7

√
b ≥ −1 for 0 < b < 1. So indeed a, b, c < 5.

Now rewrite the inequality as

∑
a ln a ≥ 0⇔

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥ 0.

Now note that if g(x) = x
6
7 lnx, then g′′(x) = 35−6 ln x

49x
8
7

> 0 for x ∈ (0, 5). Therefore g is convex and we can

use Jensen’s Inequality to get

∑(
a

1
7

a
1
7 + b

1
7 + c

1
7

)
(a

6
7 ln a) ≥

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

) 6
7

ln

(∑ a
8
7

a
1
7 + b

1
7 + c

1
7

)
.

Since
∑
a =

∑
a

1
7 , it suffices to show that

∑
a

8
7 ≥

∑
a. But by weighted AM-GM we have

6a
8
7 + a

1
7 ≥ 7a =⇒ a

8
7 − a ≥ 1

6
(a− 7

√
a).

Adding up the analogous inequalities for b, c gives the desired result. �

This second solution was suggested by David Stoner.

Solution 3. Here we unify the two solutions above.

It’s well-known that weighted AM-GM follows from (and in fact, is equivalent to) the convexity of ex (or
equivalently, the concavity of lnx), as

∑
wie

xi ≥ e
∑
wixi for reals xi and nonnegative weights wi summing

to 1. However, it also follows from the convexity of y ln y (or equivalently, the concavity of yey) for y > 0.
Indeed, letting yi = exi > 0, and taking logs, weighted AM-GM becomes

∑
wiyi ·

1

yi
log

1

yi
≥ (
∑

wiyi)

∑
wiyi · 1

yi∑
wiyi

log

∑
wiyi · 1

yi∑
wiyi

,

23 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495360

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495360
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495360


A5* Algebra – Solutions ELMO 2013

which is clear.

To find Evan’s solution, we can use the concavity of lnx to get
∑
a ln a−s ≤ (

∑
a) ln

∑
a·a−s∑

a = 0. (Here we

take s = 6/7 > 0.)

For a cleaner version of David’s solution, we can use the convexity of x lnx to get∑
a ln as =

∑
a1−s · as ln as ≥ (

∑
a1−s)

∑
a1−s · as∑
a1−s

ln

∑
a1−s · as∑
a1−s

= 0

(where we again take s = 6/7 > 0).

Both are pretty intuitive (but certainly not obvious) solutions once one realizes direct Jensen goes in the
wrong direction. In particular, s = 1 doesn’t work since we have a+b+c ≤ 3 from the power mean inequality.
�

This third solution was suggested by Victor Wang.

Solution 4. From et ≥ 1 + t for t = lnx−
6
7 , we find 6

7 lnx ≥ 1− x− 6
7 . Thus

6

7

∑
a ln a ≥

∑
a− a 1

7 = 0,

as desired. �

This fourth solution was suggested by chronodecay.

Remark. Polya once dreamed a similar proof of n-variable AM-GM: x ≥ 1 + lnx for positive x, so
∑
xi ≥

n+ ln
∏
xi. This establishes AM-GM when

∏
xi = 1; the rest follows by homogenizing.
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A6
Let a, b, c be positive reals such that a+ b+ c = 3. Prove that

18
∑
cyc

1

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

David Stoner

Solution. Since 0 ≤ a, b, c ≤ 3 we have

1

(3− c)(4− c)
≥ 2c2 + c+ 3

36
⇐⇒ c(c− 1)2(2c− 9) ≤ 0.

Then

2(ab+ bc+ ca) + 18
∑
cyc

(
2c2 + c+ 3

36

)
= (a+ b+ c)2 +

a+ b+ c+ 9

2
= 15.

�

This problem was proposed by David Stoner. This solution was given by Evan Chen.
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A7*
Consider a function f : Z→ Z such that for every integer n ≥ 0, there are at most 0.001n2 pairs of integers
(x, y) for which f(x + y) 6= f(x) + f(y) and max{|x|, |y|} ≤ n. Is it possible that for some integer n ≥ 0,
there are more than n integers a such that f(a) 6= a · f(1) and |a| ≤ n?

David Yang

Answer. No.

Solution. Call an integer conformist if f(n) = n · f(1). Call a pair (x, y) good if f(x+ y) = f(x) + f(y) and
bad otherwise. Let h(n) denote the number of conformist integers with absolute value at most n.

Let ε = 0.001, S be the set of conformist integers, T = Z \ S be the set of non-conformist integers, and
Xn = [−n, n] ∩X for sets X and positive integers n (so |Sn| = h(n)); clearly |Tn| = 2n+ 1− h(n).

First we can easily get h(n) = 2n+ 1 (−n to n are all conformist) for n ≤ 10.

Lemma 1. Suppose a, b are positive integers such that h(a) > a and b ≤ 2h(a) − 2a − 1. Then h(b) ≥
2b(1−

√
ε)− 1.

Proof. For any integer t, we have

|Sa ∩ (t− Sa)| = |Sa|+ |t− Sa| − |Sa ∪ (t− Sa)|
≥ 2h(a)− (max (Sa ∪ (t− Sa))−min (Sa ∪ (t− Sa)) + 1)

≥ 2h(a)− (max(a, t+ a)−min(−a, t− a) + 1)

= 2h(a)− (|t|+ 2a+ 1)

≥ b− |t|.

But (x, y) is bad whenever x, y ∈ S yet x+ y ∈ T , so summing over all t ∈ Tb (assuming |Tb| ≥ 2) yields

εb2 ≥ g(b) ≥
∑
t∈Tb

|Sa ∩ (t− Sa)|

≥
∑
t∈Tb

(b− |t|) ≥
b|Tb|/2c−1∑

k=0

k +

d|Tb|/2e−1∑
k=0

k ≥ 2
1

2
(|Tb|/2)(|Tb|/2− 1),

where we use br/2c+dr/2e = r (for r ∈ Z) and the convexity of 1
2x(x−1). We conclude that |Tb| ≤ 2+2b

√
ε

(which obviously remains true without the assumption |Tb| ≥ 2) and h(b) = 2b+1−|Tb| ≥ 2b(1−
√
ε)−1.

Now we prove by induction on n that h(n) ≥ 2n(1 −
√
ε) − 1 for all n ≥ 10, where the base case is

clear. If we assume the result for n − 1 (n > 10), then in view of the lemma, it suffices to show that
2h(n− 1)− 2(n− 1)− 1 ≥ n, or equivalently, 2h(n− 1) ≥ 3n− 1. But

2h(n− 1) ≥ 4(n− 1)(1−
√
ε)− 2 ≥ 3n− 1,

so we’re done. (The second inequality is equivalent to n(1 − 4
√
ε) ≥ 5 − 4

√
ε; n ≥ 11 reduces this to

6 ≥ 40
√
ε = 40

√
0.001 = 4

√
0.1, which is obvious.) �

This problem and solution were proposed by David Yang.
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A8* Algebra – Solutions ELMO 2013

A8*
Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that(∑

a(a2 + bc)
)(∑(

a

b
+
b

a

))
≥
(∑√

(a+ 1)(a3 + bc)
)(∑√

a(a+ 1)(a+ bc)
)
.

David Stoner

Solution.

Lemma 1. Let x, y, z be positive reals, not all strictly on the same side of 1. Then
∑

x
y + y

x ≥
∑
x+ 1

x .

Proof. WLOG (x− 1)(y − 1) ≤ 0; then

(x+ y + z − 1)(x−1 + y−1 + z−1 − 1) ≥ (xy + z)(x−1y−1 + z) ≥ 4

by Cauchy.

Alternatively, if x, y ≥ 1 ≥ z, one may smooth z up to 1 (e.g. by differentiating with respect to z and
observing that x−1 + y−1 − 1 ≤ x+ y − 1) to reduce the inequality to x

y + y
x ≥ 2.

Let si = ai + bi + ci and p = abc. The key is to Cauchy out s3’s from the RHS and use the lemma (in the
form s1s−1 − 3 ≥ s1 + s−1) on the LHS to reduce the problem to

(s1 + s−1)2(s3 + 3p)2 ≥ (3 + s1)(3 + s−1)(s3 + ps−1)(s3 + ps1).

By AM-GM on the RHS, it suffices to prove

s1+s−1

2 + s1+s−1

2
s1+s−1

2 + 3
≥
s3 + p s1+s−1

2

s3 + 3p
,

or equivalently, since s1+s−1

2 ≥ 3, that s3
p ≥

s1+s−1

2 . By the lemma, this boils down to 2
∑

cyc a
3 ≥∑

textcyc a(b2 + c2), which is obvious. �

This problem and solution were proposed by David Stoner.

Remark. The condition a2013 + b2013 + c2013 + abc = 4 can be replaced with anything that guarantees a, b, c
are not all on the same side of 1. One can also propose the following more direct application of the lemma
instead: “Let a, b, c be positive reals with a2013 + b2013 + c2013 + abc = 4. Prove that

∑((a
b

)2012
+

(
b

a

)2012
)
≥
∑(

a2011 +
1

a2011

)
.

” This is perhaps more motivated, but also significantly easier. Note that if one replaces the exponents in the
inequality with something like 2013 and 2012, then one may use the PQR method to reduce the problem to the
case when two of a, b, c are equal. Alternatively, if one changes the condition to a2013b+b2013c+c2013a+abc =
4, then it’s perfectly fine for the first exponent to be at least 2013 and the second to be at most 2013; however,
this makes the lemma much more transparent.
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A9 Algebra – Solutions ELMO 2013

A9

Let a, b, c be positive reals, and let 2013

√
3

a2013+b2013+c2013 = P . Prove that

∏
cyc

(
(2P + 1

2a+b )(2P + 1
a+2b )

(2P + 1
a+b+c )

2

)
≥
∏
cyc

(
(P + 1

4a+b+c )(P + 1
3b+3c )

(P + 1
3a+2b+c )(P + 1

3a+b+2c )

)
.

David Stoner

Solution. WLOG P = 1; we prove that any positive a, b, c (even those without
∑
a2013 = 3) satisfy the

inequality. The key is that f(x) = log(1 + x−1) = log(1 + x)− log(x) is convex, since f ′′(x) = −(1 + x)−2 +
x−2 > 0 for all x.

By Jensen’s inequality, we have

1

2
f(2(2a+ b)) +

1

2
f(2(2a+ c)) ≥ f(4a+ b+ c)

1

2
f(2(2b+ c)) +

1

2
f(2(2c+ b)) ≥ f(3b+ 3c)

−2f(2(a+ b+ c)) ≥ −f(3a+ 2b+ c)− f(3c+ 2b+ a).

Exponentiating and multiplying everything once (cyclically), we get the desired inequality. �

This problem and solution were proposed by David Stoner.

28 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=511443

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=511443
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=511443


C1 Combinatorics – Solutions ELMO 2013

C1
Let n ≥ 2 be a positive integer. The numbers 1, 2, . . . , n2 are consecutively placed into squares of an n× n,
so the first row contains 1, 2, . . . , n from left to right, the second row contains n+ 1, n+ 2, . . . , 2n from left
to right, and so on. The magic square value of a grid is defined to be the number of rows, columns, and

main diagonals whose elements have an average value of n
2+1
2 . Show that the magic-square value of the grid

stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of
the columns. (The operations can be used multiple times, and in any order.)

Ray Li

Solution 1. The set of row sums and column sums is clearly preserved under operations (1) and (2), so we
just have to consider the main diagonals. In configuration A, let aij denote the number in the ith row and
jth column; then whenever i 6= j and k 6= l, we have aij + akl = ail + akj . But this property is invariant as
well, so the main diagonal sums remain constant under the operations, and we’re done. �

This problem and solution were proposed by Ray Li.

Solution 2. We present a proof without words for the case n = 4, which easily generalizes to other values of
n. 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 =


0 0 0 0
4 4 4 4
8 8 8 8
12 12 12 12

+


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


�

This second solution was suggested by Evan Chen.
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C2 Combinatorics – Solutions ELMO 2013

C2
Let n be a fixed positive integer. Initially, n 1’s are written on a blackboard. Every minute, David picks two
numbers x and y written on the blackboard, erases them, and writes the number (x+y)4 on the blackboard.

Show that after n− 1 minutes, the number written on the blackboard is at least 2
4n2−4

3 .

Calvin Deng

Solution. We proceed by strong induction on n. For n = 1 this is obvious; now assuming the result up to
n − 1 for some n > 1, consider the two numbers on the blackboard after n − 2 minutes. They must have
been created “independently,” where the first took a− 1 minutes and the second took b− 1 minutes for two
positive integers a, b (a+ b = n). But 2x is convex, so

2
4a2−4

3 + 2
4b2−4

3 ≥ 2 · 2
2(a2+b2)−4

3 ≥ 2 · 2
(a+b)2−4

3 = 2
(a+b)2−1

3 = 2
n2−1

3 ,

completing the induction. �

This problem and solution were proposed by Calvin Deng.
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C3* Combinatorics – Solutions ELMO 2013

C3*
Let a1, a2, . . . , a9 be nine real numbers, not necessarily distinct, with average m. Let A denote the number
of triples 1 ≤ i < j < k ≤ 9 for which ai + aj + ak ≥ 3m. What is the minimum possible value of A?

Ray Li

Answer. A ≥ 28.

Solution 1. Call a 3-set good iff it has average at least m, and let S be the family of good sets.

The equality case A = 28 can be achieved when a1 = · · · = a8 = 0 and a9 = 1. Here m = 1
9 , and the good

sets are precisely those containing a9. This gives a total of
(
8
2

)
= 28.

To prove the lower bound, suppose we have exactly N good 3-sets, and let p = N

(9
3)

denote the probability

that a randomly chosen 3-set is good. Now, consider a random permutation π of {1, 2, . . . , 9}. Then the

corresponding partition
⋃2
i=0{π(3i+ 1), π(3i+ 2), π(3i+ 3)} has at least 1 good 3-set, so by the linearity of

expectation,

1 ≤ E

[
2∑
i=0

[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]

]

=

2∑
i=0

[E[{π(3i+ 1), π(3i+ 2), π(3i+ 3)} ∈ S]]

=

2∑
i=0

1 · p = 3p.

Hence N = p
(
9
3

)
≥ 1

3

(
9
3

)
= 28, establishing the lower bound. �

This problem and solution were proposed by Ray Li.

Remark. One can use double-counting rather than expectation to prove N ≥ 28. In any case, this method
generalizes effortlessly to larger numbers.

Solution 2. Proceed as above to get an upper bound of 28.

On the other hand, we will show that we can partition the
(
9
3

)
= 84 3-sets into 28 groups of 3, such that in

any group, the elements a1, a2, · · · , a9 all appear. This will imply the conclusion, since if A < 28, then there
are at least 57 sets with average at most m, but by pigeonhole three of them must be in such a group, which
is clearly impossible.

Consider a 3-set and the following array:
a1 a2 a3
a4 a5 a6
a7 a8 a9

Consider a set |S| = 3. We obtain the other two 3-sets in the group as follows:

• If S contains one element in each column, then shift the elements down cyclically mod 3.

• If S contains one element in each row, then shift the elements right cyclically mod 3. Note that the
result coincides with the previous case if both conditions are satisfied.

• Otherwise, the elements of S are “constrained” in a 2×2 box, possibly shifted diagonally. In this case,
we get an L-tromino. Then shift diagonally in the direction the L-tromino points in.

One can verify that this algorithm creates such a partition, so we conclude that A ≥ 28. �

This second solution was suggested by Lewis Chen.
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C4 Combinatorics – Solutions ELMO 2013

C4
Let n be a positive integer. The numbers {1, 2, . . . , n2} are placed in an n × n grid, each exactly once.
The grid is said to be Muirhead-able if the sum of the entries in each column is the same, but for every
1 ≤ i, k ≤ n− 1, the sum of the first k entries in column i is at least the sum of the first k entries in column
i+ 1. For which n can one construct a Muirhead-able array?

Evan Chen

Answer. All n 6= 3.

Solution. It’s easy to prove n = 3 doesn’t work since the top row must be 9,8,7 (each column sums to 15)
and the first column is either 9,5,1 or 9,4,2.

A construction for even n is not hard to realize:

n2 n2 − 1 · · · n2 − n+ 1
n2 − n n2 − n− 1 · · · n2 − 2n+ 1

...
...

. . .
...

n2 − (n2 − 1)n n2 − (n2 − 1)n · · · n2 − (n2 )n+ 1
n2 − (n2 + 1)n+ 1 n2 − (n2 + 1)n+ 2 · · · n2 − (n2 )n

...
...

. . .
...

n+ 1 n+ 2 · · · 2n
1 2 · · · n

And we can just alter the even construction a bit for n ≥ 5 odd; I’ll just write it out for n = 7 since it
generalizes easily: we modify

7



6 6 6 6 6 6 6
5 5 5 5 5 5 5
4 4 4 4 4 4 4
3 3 3 3 3 3 3
2 2 2 2 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0


+



7 6 5 4 3 2 1
7 6 5 4 3 2 1
7 6 5 4 3 2 1
4 4 4 4 4 4 4
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7


to get

7



6 6 6 6 6 6 6
5 5 5 5 5 5 5
4 4 4 4 4 4 4
3 3 3 3 3 3 3
2 2 2 2 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0


+



7 6 5 4 3 2 1
7 6 5 4 3 2 1
5 6 7 1 2 3 4
6 4 2 7 5 3 1
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7


.

If we verify the majorization condition for the original one (without regard to distinctness) then we only
have to check it in the new one for k = 3 = n−1

2 and i = 1, 2, 4, 5, 6 (in particular, we can skip i = 3 = n−1
2 ).

�

This problem and solution were proposed by Evan Chen.
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C5 Combinatorics – Solutions ELMO 2013

C5
There is a 2012× 2012 grid with rows numbered 1, 2, . . . 2012 and columns numbered 1, 2, . . . , 2012, and we
place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has
a positive integer thickness. (in micrometers!)

(a) Show that there exist 20122 unique integers ai,j where i, j ∈ [1, 2012] such that for all x, y ∈ [1, 2012],
the sum

x∑
i=1

y∑
j=1

ai,j

is equal to the sum of the thicknesses of all the napkins that cover the grid square in row x and column
y.

(b) Show that if we use at most 500, 000 napkins, at least half of the ai,j will be 0.

Ray Li

Solution 1. (a) Let ti,j be the total thickness at square (i, j) (row i, column j). For convenience, set ti,j = 0
outside the boundary (i.e. if one of i, j is less than 1 or greater than 2012). By induction on i+ j ≥ 2 (over
i, j ∈ [2012]), it’s easy to see that the ai,j are uniquely defined as ti,j + ti−1,j−1 − ti−1,j − ti,j−1 (and that
this solution also works).

(b) One can easily check that ai,j = 0 if no napkin corners lie at intersection of the ith vertical grid line (from
the top) and the jth horizontal grid line (from the left). Indeed, if we color squares (i− 1, j − 1) and (i, j)
red, (i − 1, j) and (i, j − 1) blue, then if there are no such napkin corners, every napkin must hit an equal
number of red and blue squares and thus contribute zero to the sum ti,j + ti−1,j−1 − ti−1,j − ti,j−1. On the
other hand, there are at most 4 · 500000 corners, and 20122 > 4000000 = 2(4 · 500000) pairs (i, j) ∈ [2012]2,
so we’re done. �

Solution 2. Throughout this proof, rows go from bottom to top, and columns go from left to right.

Suppose we add a napkin with thickness x.

This affects the a-value only at the four corner points of the napkin. Corners are defined to be the bolded
points in the following diagram. If the napkin shares an edge with the top boundary or the right boundary,
some corners may not be considered for a-value valuation, which is even better for part (b). [Alternatively,
for purists out there, define a-values for i, j = 2013.]

0 0 0 0 0
−1 0 0 1 0

0 0 0 0 0

1 0 0 −1 0

Boxes represent squares covered by napkins.

Specifically, the a-values of the bottom-left and top-right corners increment by x, and the bottom-right and
top-left corners decrement by x. (Easy verification with diagram. This should be somewhat intuitive as well:
think PIE.)

Notably, the process of adding a napkin is additive and reversible. Hence no matter how many napkins are
placed on the table, we can just add a-values together.

So a-values exist, and can be consistently labeled. Furthermore, each napkin modifies at most 4 a-values, so
with 500,000 napkins at most 2 million a-values are modified, which is less than half of 20122. �

This problem and its solutions were proposed by Ray Li.
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C6 Combinatorics – Solutions ELMO 2013

C6
A 4 × 4 grid has its 16 cells colored arbitrarily in three colors. A swap is an exchange between the colors
of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry,
regardless of the grid’s initial coloring.

Matthew Babbitt

Answer. No.

Solution. We provide the following counterexample, in the colors red, white, and green:

W W G W
R W W R
R R R G
R W W G

Suppose for contradiction that we can get a line of symmetry in 3 or less swaps. Clearly the symmetry must
be over a diagonal.

If it is upper left to lower right, then there are 6 pairs of squares that reflect to each other over this diagonal
and 4 squares on the diagonal. None of the 6 pairs are matched, so at least one square in each must be
part of a swap. Also, there must be an even number of red squares on the diagonal, so one of the diagonal
squares must be swapped, for a total of 7 > 3 · 2. This requires more than 3 swaps. The other diagonal
works similarly. �

This problem was proposed by Matthew Babbitt. This solution was given by Bobby Shen.

Remark. To construct counterexamples, we first put an odd number of one color (so symmetry must be
over a diagonal), make no existing matches over the diagonal, and require that one or more of the diagonal
squares be part of a swap.
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C7* Combinatorics – Solutions ELMO 2013

C7*
A 22013 + 1 by 22013 + 1 grid has some black squares filled. The filled black squares form one or more snakes
on the plane, each of whose heads splits at some points but never comes back together. In other words,
for every positive integer n > 1, there do not exist pairwise distinct black squares s1, s2, . . . , sn such that
si, si+1 share an edge for i = 1, 2, . . . , n (here sn+1 = s1). What is the maximum possible number of filled
black squares?

David Yang

Answer. If n = 2m + 1 is the dimension of the grid, the answer is 2
3n(n+ 1)− 1. In this particular instance,

m = 2013 and n = 22013 + 1.

Solution. Let n = 2m + 1. Double-counting square edges yields 3v + 1 ≤ 4v − e ≤ 2n(n + 1), so because
n 6≡ 1 (mod 3), v ≤ 2n(n+ 1)/3− 1. Observe that if 3 - n− 1, equality is achieved iff (a) the graph formed
by black squares is a connected forest (i.e. a tree) and (b) all but two square edges belong to at least one
black square.

We prove by induction on m ≥ 1 that equality can in fact be achieved. For m = 1, take an “H-shape” (so
if we set the center at (0, 0) in the coordinate plane, everything but (0,±1) is black); call this G1. To go
from Gm to Gm+1, fill in (2x, 2y) in Gm+1 iff (x, y) is filled in Gm, and fill in (x, y) with x, y not both even
iff x + y is odd (so iff one of x, y is odd and the other is even). Each “newly-created” white square has
both coordinates odd, and thus borders 4 (newly-created) black squares. In particular, there are no new
white squares on the border (we only have the original two from G1). Furthermore, no two white squares
share an edge in Gm+1, since no square with odd coordinate sum is white. Thus Gm+1 satisfies (b). To
check that (a) holds, first we show that (2x1, 2y1) and (2x2, 2y2) are connected in Gm+1 iff (x1, y1) and
(x2, y2) are black squares (and thus connected) in Gm (the new black squares are essentially just “bridges”).
Indeed, every path in Gm+1 alternates between coordinates with odd and even sum, or equivalently, new
and old black squares. But two black squares (x1, y1) and (x2, y2) are adjacent in Gm iff (x1 + x2, y1 + y2)
is black and adjacent to (2x1, 2y1) and (2x2, 2y2) in Gm+1, whence the claim readily follows. The rest is
clear: the set of old black squares must remain connected in Gm+1, and all new black squares (including
those on the boundary) border at least one (old) black square (or else Gm would not satisfy (b)), so Gm+1

is fully connected. On the other hand, Gm+1 cannot have any cycles, or else we would get a cycle in Gm by
removing the new black squares from a cycle in Gm+1 (as every other square in a cycle would have to have
odd coordinate sum). �

This problem and solution were proposed by David Yang.
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C8 Combinatorics – Solutions ELMO 2013

C8
There are 20 people at a party. Each person holds some number of coins. Every minute, each person who
has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that
A gives B a coin and B gives A a coin at the same time.) Suppose that this process continues indefinitely.
That is, for any positive integer n, there exists a person who will give away coins during the nth minute.
What is the smallest number of coins that could be at the party?

Ray Li

Solution 1. Call a person giving his 19 coins away a charity. For any finite, fixed number of coins there are
finitely many states, which implies that the states must cycle infinitely. Hence by doing individual charities
one by one, there is a way to make it cycle infinitely (just take the charities that would normally happen at
the same time and do them one by one all together before moving on). So this means we can reverse the
charities and have it go on infinitely the other way, so call an inverse charity a theft. But after k ≤ 20 thefts,
the number of coins among the people who have stolen at least once is at least 19 + 18 + · · ·+ (20− k) since
the kth thief steals at most k − 1 coins from people who were already thieves but gains 19. So then we’re
done since for k = 20 this is 190. Of course, one construction is just when person j has j − 1 coins. �

This first solution was suggested by Mark Sellke.

Solution 2. Like above, do the charities in arbitrary order among the ones that are “together.” Assume
there are at most 189 coins. Then the sum of squares of coins each guy has decreases each time, since if one
guy loses 19 coins then the sums of squares decreases by at least 361, while giving 1 coin to everyone else
increases it by 19+2(number of coins they had before), and the number of coins they had before is less than
171 since the giving guy had 19 already, and so the sum of squares decreases since 361 > 19 + 2 · 170. �

This second solution was suggested by Mark Sellke.

Remark. Compare with this problem in 102 Combinatorial Problems (paraphrased, St. Petersburg 1988):
“119 residents live in a place with 120 apartments. Every day, in each apartment with at least 15 people, all
the people move out into pairwise distinct apartments. Must this process terminate?”

This problem was proposed by Ray Li.
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C9*
f0 is the function from Z2 to {0, 1} such that f0(0, 0) = 1 and f0(x, y) = 0 otherwise. For each i > 1, let
fi(x, y) be the remainder when

fi−1(x, y) +

1∑
j=−1

1∑
k=−1

fi−1(x+ j, y + k)

is divided by 2.

For each i ≥ 0, let ai =
∑

(x,y)∈Z2 fi(x, y). Find a closed form for an (in terms of n).

Bobby Shen

Solution. ai is simply the number of odd coefficients of Ai(x, y) = A(x, y)i, where A(x, y) = (x2+x+1)(y2+
y+ 1)−xy. Throughout this proof, we work in F2 and repeatedly make use of the Frobenius endomorphism

in the form A2km(x, y) = Am(x, y)2
k

= Am(x2
k

, y2
k

) (*). We advise the reader to try the following simpler
problem before proceeding: “Find (a recursion for) the number of odd coefficients of (x2 + x+ 1)2

n−1.”

First suppose n is not of the form 2m − 1, and has i ≥ 0 ones before its first zero from the right. By direct
exponent analysis (after using (*)), we obtain an = an−(2i−1)

2

a2i−1. Applying this fact repeatedly, we find

that an = a2`1−1 · · · a2`r−1, where `1, `2, . . . , `r are the lengths of the r consecutive strings of ones in the
binary representation of n. (When n = 2m − 1, this is trivially true. When n = 0, we take r = 0 and a0 to
be the empty product 1, by convention.)

We now restrict our attention to the case n = 2m−1. The key is to look at the exponents of x and y modulo
2—in particular, A2n(x, y) = An(x2, y2) has only “(0, 0) (mod 2)” terms for i ≥ 1. This will allow us to find
a recursion.

For convenience, let U [B(x, y)] be the number of odd coefficients of B(x, y), so U [A2n−1(x, y)] = a2n−1.
Observe that

A(x, y) = (x2 + x+ 1)(y2 + y + 1)− xy = (x2 + 1)(y2 + 1) + (x2 + 1)y + x(y2 + 1)

(x+ 1)A(x, y) = (y2 + 1) + (x2 + 1)y + x3(y2 + 1) + (x3 + x)y

(x+ 1)(y + 1)A(x, y) = (x2y2 + 1) + (x2y + y3) + (x3 + xy2) + (x3y3 + xy)

(x+ y)A(x, y) = (x2 + y2) + (x2 + 1)(y3 + y) + (x3 + x)(y2 + 1) + (x3y + xy3).

Hence for n ≥ 1, we have (using (*) again)

U [A2n−1(x, y)] = U [A(x, y)A2n−1−1(x2, y2)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + U [(y + 1)A2n−1−1(x, y)] + U [(x+ 1)A2n−1−1(x, y)]

= U [(x+ 1)(y + 1)A2n−1−1(x, y)] + 2U [(x+ 1)A2n−1−1(x, y)].

Similarly, we get

U [(x+ 1)A2n−1] = 2U [(y + 1)A2n−1−1] + 2U [(x+ 1)A2n−1−1] = 4U [(x+ 1)A2n−1−1]

U [(x+ 1)(y + 1)A2n−1] = 2U [(xy + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1] = 4U [(x+ y)A2n−1−1]

U [(x+ y)A2n−1] = 2U [(x+ 1)(y + 1)A2n−1−1] + 2U [(x+ y)A2n−1−1].

Here we use the symmetry between x and y, and the identity (xy+ 1) = y(x+ y−1).) It immediately follows
that

U [(x+ 1)(y + 1)A2n+1−1] = 4U [(x+ y)A2n−1]

= 8U [(x+ 1)(y + 1)A2n−1−1] + 8
U [(x+ 1)(y + 1)A2n−1]

4
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for all n ≥ 1, and because x− 4 | (x+ 2)(x− 4) = x2 − 2x− 8,

U [A2n+2−1(x, y)] = 2U [A2n+1−1(x, y)] + 8U [A2n−1(x, y)]

as well. But U [A20−1] = 1, U [A21−1] = 8, and

U [A22−1] = 4U [x+ y] + 8U [x+ 1] = 24,

so the recurrence also holds for n = 0. Solving, we obtain a2n−1 = 5·4n−2(−2)n
3 , so we’re done. �

This problem and solution were proposed by Bobby Shen.

Remark. The number of odd coefficients of (x2 +x+ 1)n is the Jacobsthal sequence (OEIS A001045) (up to
translation). The sequence {an} in the problem also has a (rather empty) OEIS entry. It may be interesting
to investigate the generalization

1∑
j=−1

1∑
k=−1

cj,kfi−1(x+ j, y + k)

for 9-tuples (cj,k) ∈ {0, 1}9. Note that when all cj,k are equal to 1, we get (x2 + x + 1)n(y2 + y + 1)n, and
thus the square of the Jacobsthal sequence.

Even more generally, one may ask the following: “Let f be an integer-coefficient polynomial in n ≥ 1
variables, and p be a prime. For i ≥ 0, let ai denote the number of nonzero coefficients of fp

i−1 (in Fp).
Under what conditions must there always exist an infinite arithmetic progression AP of positive integers for
which {ai : i ∈ AP} satisfies a linear recurrence?”
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C10*
Let N ≥ 2 be a fixed positive integer. There are 2N people, numbered 1, 2, . . . , 2N , participating in a tennis
tournament. For any two positive integers i, j with 1 ≤ i < j ≤ 2N , player i has a higher skill level than
player j. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court
among N courts, numbered 1, 2, . . . , N .

During a round, each player plays against the other person assigned to his court (so that exactly one match
takes place per court), and the player with higher skill wins the match (in other words, there are no upsets).
Afterwards, for i = 2, 3, . . . , N , the winner of court i moves to court i − 1 and the loser of court i stays on
court i; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court N .

Find all positive integers M such that, regardless of the initial pairing, the players 2, 3, . . . , N + 1 all change
courts immediately after the Mth round.

Ray Li

Answer. M ≥ N + 1.

Solution. It is enough to prove the claim for M = N + 1. (Why?)

After the kth move (k ≥ 0), let a
(k)
i ∈ [0, 2] be the number of rookies (players N + 2, . . . , 2N) in court i so

that a
(k)
1 + · · ·+ a

(k)
N = N − 1.

The operation from the perspective of the rookies can be described as follows: a
(k)
i = 2 for some i ∈ {2, . . . , N}

means we “transfer” a rookie from court i to court i − 1 on the (k + 1)th move, and a
(k)
1 ≥ 1 means we

“transfer” a rookie from court 1 to court N on the (k+ 1)th move. Note that if a
(k)
i ≥ 1 for some k ≥ 0 and

i ∈ {2, . . . , N}, we must have a
(k+r)
i ≥ 1 for all r ≥ 0. (*)

But we also know that all “excesses” can be traced back to “transfers”. More precisely, if a
(k)
i = 2 for some

i ∈ {2, . . . , N − 1} and k ≥ 1, we must have a
(k−1)
i+1 = 2; if a

(k)
N = 2, we must have a

(k−1)
1 ≥ 1; and if a

(k)
1 ≥ 1,

we must either have (i) a
(k−1)
2 = 2 or (ii) a

(k−1)
1 = 2 and if k ≥ 2, a

(k−2)
2 = 2.

If a
(N)
i = 2 for some i ∈ {2, . . . , N} or a

(N)
1 ≥ 1, then by the previous paragraph and (*) we see that a

(N)
i ≥ 1

for i = 2, . . . , N , contradicting the fact that a
(N)
1 + · · ·+a(N)

N = N−1. (Here possibility (ii) from the previous
paragraph forces us to consider the Nth move rather than the (N − 1)th move.)

Hence a
(N)
1 = 0, a

(N)
2 = · · · = a

(N)
N = 1, and of course player 1 stabilizes after at most N − 1 moves (he

always wins), so we get a bound of ≥ 1 + max(N − 1, N) = N + 1.

We cannot replace the condition M ≥ N + 1 with M ≥ N ′ for any N ′ < N . Indeed, any configuration with

(a
(0)
1 , . . . , a

(0)
N ) = (2, 0, 0, 1, 1, 1, 1, . . . , 1) shows that N + 1 is the “best bound possible.” �

This problem was proposed by Ray Li. This solution was given by Victor Wang.

Remark. The key idea (which can be easily found by working backwards) is to focus on the rookies. Asking
for the minimum number of rounds required for stablization rather than giving the answer directly (here
N + 1) may make the problem slightly more difficult, but once one conceives the idea of isolating rookies,
even this version is not much harder.
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G1
Let ABC be a triangle with incenter I. Let U , V and W be the intersections of the angle bisectors of angles
A, B, and C with the incircle, so that V lies between B and I, and similarly with U and W . Let X, Y ,
and Z be the points of tangency of the incircle of triangle ABC with BC, AC, and AB, respectively. Let
triangle UVW be the David Yang triangle of ABC and let XY Z be the Scott Wu triangle of ABC. Prove
that the David Yang and Scott Wu triangles of a triangle are congruent if and only if ABC is equilateral.

Owen Goff

Solution. The angles of the triangles are (A+B
2 , B+C

2 , C+A
2 ) and (

A+B
2 +B+C

2

2 ,
B+C

2 +C+A
2

2 ,
C+A

2 +A+B
2

2 ) by quick

angle chasing. Since the sets (x, y, z), (x+y2 , y+z2 , z+x2 ) are equal iff x = y = z, we are done. �

This problem and solution were proposed by Owen Goff.
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G2
Let ABC be a scalene triangle with circumcircle Γ, and let D,E,F be the points where its incircle meets
BC, AC, AB respectively. Let the circumcircles of 4AEF , 4BFD, and 4CDE meet Γ a second time at
X,Y, Z respectively. Prove that the perpendiculars from A,B,C to AX,BY,CZ respectively are concurrent.

Michael Kural

Solution 1. We claim that this point is the reflection of I the incenter over O the circumcenter. Since
∠AEI = ∠AFI = π

2 , AFIE is cyclic with diameter AI, so ∠AXI = 90. Also, if M is the midpoint of AX,
then OM ⊥ AX, so clearly the reflection of I over O lies on each of the perpendiculars. �

Solution 2. Extend BY and CZ, CZ and AZ, and AX and BY to meet at P,Q,R respectively. Note that
P is the radical center of the circumcircles of BDF and CDE and Γ, so P lies on the radical axis DI of
the two circumcircles (I lies on both circles as we showed before). Then the perpendiculars from P,Q,R to
BC,AC,AB concur at I, so by Carnot’s theorem

PB2 − PC2 +QC2 −QA2 +RA2 −RB2 = 0 =⇒ AQ2 −AR2 +BR2 −BP 2 + CP 2 − CQ2 = 0.

Again by Carnot’s theorem the perpendiculars from A,B,C to QR,PR,PQ concur, which was what we
wanted. (In other words, triangles ABC and PQR are orthologic.) �

This problem and its solutions were proposed by Michael Kural.
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G3
In 4ABC, a point D lies on line BC. The circumcircle of ABD meets AC at F (other than A), and the
circumcircle of ADC meets AB at E (other than A). Prove that as D varies, the circumcircle of AEF always
passes through a fixed point other than A, and that this point lies on the median from A to BC.

Allen Liu

Solution 1. Invert about A. We get triangle ABC with a variable point D on its circumcircle. CD meets
AB at E, BD meets AC at F . The pole of EF is the intersection of AD and BC, so it lies on BC, and the
fixed pole of BC lies on EF , proving the claim. Also, since pole of BC is the intersection of the tangents
from B and C, the point lies on the symmedian, which is the median under inversion. �

This first solution was suggested by Michael Kural.

Solution 2. Use barycentric coordinates with A = (1, 0, 0), etc. Let D = (0 : m : n) with m+ n = 1. Then
the circle ABD has equation −a2yz− b2zx− c2xy+ (x+ y+ z)

(
a2m · z

)
. To intersect it with side AC, put

y = 0 to get (x+ z)(a2mz) = b2zx =⇒ b2

a2m · x = x+ z =⇒
(

b2

a2m − 1
)
x = z, so

F = (a2m : 0 : b2 − a2m)

Similarly,
G = (a2n : c2 − a2n : 0).

Then, the circle (AFG) has equation

−a2yz − b2zx− c2xy + a2(x+ y + z)(my + nz) = 0.

Upon picking y = z = 1, we easily see there exists a t such that (t : 1 : 1) is on the circle, implying the
conclusion. �

This second solution was suggested by Evan Chen.

Solution 3. Let M be the midpoint of BC. By power of a point, c · BE + b · CF = a · BD + a · CD = a2

is constant. Fix a point D0; and let P0 = AM ∩ (AE0F0). For any other point D, we have E0E
F0F

= b
c =

sin∠BAM
sin∠CAM = P0E0

P0F0
from the extended law of sines, so triangles P0E0E and P0F0F are directly similar, whence

AEP0F is cyclic, as desired. �

This third solution was suggested by Victor Wang.

This problem was proposed by Allen Liu.
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G4*
Triangle ABC is inscribed in circle ω. A circle with chord BC intersects segments AB and AC again at
S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect ω at D and E,
respectively. The internal angle bisector of ∠BDE meets line ER at K. Prove that if BE = BR, then
∠ELK = 1

2∠BCD.

Evan Chen

Solution 1.

B C

S
R

A

D

E

L

K

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR centered at B, and
notice that ∠ECR = 1

2∠EBR, implying that it lies on the circle.

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of 4CDE. Then, K is the incenter

of 4LED, so ∠ELK = 1
2∠ELD = 1

2

(
ÊD+B̂C

2

)
= 1

2
B̂ED

2 = 1
2∠BCD. �

This problem and solution were proposed by Evan Chen.

Solution 2. Note ∠EBA = ∠ECA = ∠SCR = ∠SBR = ∠ABR, so AB bisects ∠EBR. Then by symmetry
∠BEA = ∠BRA, so ∠BCR = ∠BCA = 180 − ∠BEA = 180 − ∠BRA = ∠BRC, so BE = BR = BC.
Proceed as above. �

This second solution was suggested by Michael Kural.
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G5
Let ω1 and ω2 be two orthogonal circles, and let the center of ω1 be O. Diameter AB of ω1 is selected so
that B lies strictly inside ω2. The two circles tangent to ω2, passing through O and A, touch ω2 at F and
G. Prove that FGOB is cyclic.

Eric Chen

Solution. Invert about ω1. Then the problem becomes: “ω1 and ω2 are orthogonal circles. Show that if A
is on ω1 and outside of ω2, and its tangents to ω2 touch ω2 at F,G, then its antipode B lies on FG.”

Now let P be the center of ω2, and let AP intersect FG at E. Then ω1 is constant under an inversion with
respect to ω2, so E, the inverse of A, is on ω1. Then ∠AEB = π

2 , but AE ⊥ FG so B is on FG and we are
done. �

This problem was proposed by Eric Chen. This solution was given by Michael Kural.
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G6
Let ABCDEF be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define X =
AB ∩DE, Y = BC ∩ EF , and Z = CD ∩ FA. Prove that

XY

XZ
=
BE

AD

sin |∠B − ∠E|
sin |∠A− ∠D|

.

Victor Wang

Solution. Use complex numbers with a, b, c, d, e, f on the unit circle, so x = ab(d+e)−de(a+b)
ab−de and so on. It

will be simpler to work with the conjugates of x, y, z, i.e. x = a+b−d−e
ab−de , etc. Observing that

x− y =
a+ b− d− e
ab− de

− b+ c− e− f
bc− ef

=
(a− d)(cb− fe)− (c− f)(ab− de) + (b− e)(bc− ef − ab+ de)

(ab− de)(bc− ef)

=
(b− e)(fa− cd+ (bc− ef − ab+ de))

(ab− de)(bc− ef)
,

we find (by “cyclically shifting” the variables by one so that x− y → z − x) that

x− y
x− z

=
b− e
a− d

af − cd
bc− ef

=
b− e
a− d

a/c− d/f
b/f − e/c

,

from which the desired claim readily follows. �

This problem and solution were proposed by Victor Wang.
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G7*
Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect ω at D and E
respectively. Let O1 be the center of the circle through D tangent to AC at C, and let O2 be the center
of the circle through E tangent to AB at B. Prove that O1, O2, and the nine-point center of ABC are
collinear.

Michael Kural

Solution 1. Let M,N be the midpoints of AC,AB, respectively. Also, let BD,CE intersect (O1) for a
second time at X1, Y1, and let CE,BD intersect (O2) for a second time at X2, Y2.

Now, by power of a point we have

MX1 ·MD = MC2 = MC ·MA = MD ·MB,

so MX1 = MB, and X1 is the reflection of B over M . Similarly, X2 is the reflection of C over N .

(Alternatively, let X ′1 be the reflection of B over M , and let D′ be the intersection of the circles through X ′1
tangent to AC at A,C respectively. Then by radical axes X ′1D

′ bisects AC and ∠ADC = 180−∠AX ′1C =
180− ∠ABC. This implies D′ = D and X ′1 = X1.)

Now let ZX1X2 be the antimedial triangle of ABC, and observe that ∠X2Y1X1 = ∠CDB = A = ∠CEB =
∠X2Y2X1. But A = ∠X2ZX1, so X1Y1 ‖ EB, X2Y2 ‖ DC, and X1X2Y2ZY1 is cyclic. Hence the lines
through the centers of (O1), (ZX1X2), and (ABC), (O2) are parallel. In other words, O1H ‖ OO2 O1O ‖ HO2

(where O,H are the circumcenter and orthocenter of ABC), so O1HO2O is a parallelogram. Thus the
midpoint of O1O2 is the midpoint N of OH. �

This problem and solution were proposed by Michael Kural.

Remark. In fact, a −2 dilation about G sends B,D,C,E,O,A to X1, Y2, X2, Y1, H, Z.

Solution 2. Let (ABC) be the unit circle in the complex plane. Using the spiral similarities D : CO1 → AO
and E : BO2 → AO (since AC is tangent to (O1) and AB is tangent to (O2)), it’s easy to compute

o1 = c(a+c−2b)
c−b and o2 = b(a+b−2c)

b−c (after solving for d, e via bd(a+c)−ac(b+d)
bd−ac = m = a+c

2 ), which gives us
o1 + o2 = a+ b+ c = 2n. �

This second solution was suggested by Victor Wang.

46 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=509625

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=509625
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=509625


G8 Geometry – Solutions ELMO 2013

G8
Let ABC be a triangle, and let D, A, B, E be points on line AB, in that order, such that AC = AD and
BE = BC. Let ω1, ω2 be the circumcircles of 4ABC and 4CDE, respectively, which meet at a point
F 6= C. If the tangent to ω2 at F cuts ω1 again at G, and the foot of the altitude from G to FC is H, prove
that ∠AGH = ∠BGH.

David Stoner

Solution 1. Let the centers of ω1 and ω2 be O1 and O2. Extend CA and CB to hit ω2 again at K and L,
respectively. Extend CO2 to hit ω2 again at R. Let M be the midpoint of arc ÂB, N the midpoint of arc
F̂C on ω2, and T the intersection of FC and GM .

It’s easy to see that CK = CL = DE, so O2 is the C-excenter of triangle ABC. Hence C, M , and O2 are
collinear. Now ∠CO2O1 = ∠CO2N = 2∠CRN = ∠CRF = ∠CFG = ∠CMG, so MT is parallel to O1O2,
and thus perpendicular to CF . But M is the midpoint of arc ÂB, so ∠AGM = ∠MGB, and we’re done. �

Solution 2. The observation that AO2 is the perpendicular bisector of DC is not crucial; the key fact is just
that ∠GFC = ∠FEC, since GF is tangent to ω2. Indeed, this yields

∠AGH = ∠AGF − ∠HGF = ∠ACF − 90◦ + ∠GFC = ∠ACF − 90◦ + ∠FEC.

But ∠ACF = 180◦ − ∠DCA − ∠FED, α = ∠DCA, and β = ∠CEB = ∠FED − ∠FEC, so ∠AGH =
90◦ − α− β = γ, where α, β, γ are half-angles. By symmetry, ∠BGH = γ as well, so we’re done. �

This problem and its solutions were proposed by David Stoner.
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G9
Let ABCD be a cyclic quadrilateral inscribed in circle ω whose diagonals meet at F . Lines AB and CD
meet at E. Segment EF intersects ω at X. Lines BX and CD meet at M , and lines CX and AB meet at
N . Prove that MN and BC concur with the tangent to ω at X.

Allen Liu

Solution. Let EF meet BC at P , and let K be the harmonic conjugate of P with respect to BC. View EP
as a cevian of 4EBC. Since the cevians AC, BD and EP concur, it follows that AD passes through K.
Similarly, MN passes through K. However, by Brokard’s theorem, EF is the pole of K with respect to ω,
so KX is tangent to ω. Therefore, the three lines in question concur at K. �

This problem and solution were proposed by Allen Liu.
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G10* Geometry – Solutions ELMO 2013

G10*
Let AB = AC in 4ABC, and let D be a point on segment AB. The tangent at D to the circumcircle ω of
BCD hits AC at E. The other tangent from E to ω touches it at F , and G = BF ∩ CD, H = AG ∩ BC.
Prove that BH = 2HC.

David Stoner

Solution 1. Let J be the second intersection of ω and AC, and X be the intersection of BF and AC. It’s
well-known that DJFC is harmonic; perspectivity wrt B implies AJXC is also harmonic. Then AJ

JX =
AC
CX =⇒ (AJ)(CX) = (AC)(JX). This can be rearranged to get

(AJ)(CX) = (AJ + JX +XC)(JX) =⇒ 2(AJ)(CX) = (JX +AJ)(JX +XC) = (AX)(CJ),

so (
AX

XC

)(
CJ

JA

)
= 2.

But CJ
JA = AD

DB , so by Ceva’s we have BH = 2HC, as desired. �

Solution 2. Let J be the second intersection of ω and AC. It’s well-known that DJFC is harmonic; thus
we have (DJ)(FC) = (JF )(DC). By Ptolemy’s, this means

(DF )(JC) = (DJ)(FC) + (JF )(DC) = 2(JD)(CF ) =⇒
(
JC

JD

)(
FD

FC

)
= 2.

Yet JC = DB by symmetry, so this becomes

2 =

(
DB

JD

)(
FD

FC

)
=

(
sinDJB

sin JBD

)(
sinFCD

sinFDC

)
=

(
sinDCB

sinACD

)(
sinFBA

sinCBF

)
.

Thus by (trig) Ceva’s we have sinBAH
sinCAH = 2, and since AB = AC it follows that BH = 2HC, as desired. �

This problem and its solutions were proposed by David Stoner.
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G11
Let 4ABC be a nondegenerate isosceles triangle with AB = AC, and let D,E, F be the midpoints of
BC,CA,AB respectively. BE intersects the circumcircle of 4ABC again at G, and H is the midpoint of
minor arc BC. CF ∩DG = I,BI ∩AC = J . Prove that ∠BJH = ∠ADG if and only if ∠BID = ∠GBC.

David Stoner

Solution. By barycentric coordinates on 4ABC it is easy to obtain G = (a2 + c2 : −b2 : a2 + c2). Then, one
can compute I = (a2+c2 : a2+c2 : b2+2(a2+c2)), from which it follows that J = (a2+c2 : 0 : b2+2(a2+c2)).

Now we use complex numbers. Set D = 0, C = 1, B = −1, A = ri for r ∈ R+, K = r
3 , and H = − i

r . Now,

upon using the vector definition for barycentric coordinates, we obtain I = (r2+5)(ri)+(r2+5)(−1)+(3r2+11)(1)
5r2+21 ,

or

I =
2r2 + 6

5r2 + 21
+
r(r2 + 5)

5r2 + 21
i.

Similarly, we can get

J =
3r2 + 11

4r2 + 16
+
r(r2 + 5)

4r2 + 16
i.

Claim. ∠BID = ∠GBC ⇐⇒ r6 + 9r4 − 17r2 − 153 = 0.

Proof. Let V (a+ bi) = b
a for a, b ∈ R, and note V (nz) = V (z) for all n ∈ R. Then,

∠BID = ∠GBC ⇐⇒ V

(
D − I
B − I

)
= V

(
G−B
C −B

)
Obviously the right-hand side is r

3 . Meanwhile,

−I
1− I

=
I

I + 1

=
2r2+6
5r2+21 + r(r2+5)

5r2+21 i

7r2+27
5r2+21 + r(r2+5)

5r2+21 i

=
1

real

[(
(2r2 + 6) + r(r2 + 5)i

) (
(7r2 + 26)− r(r2 + 5)i

)]
=

1

real

[(
r6 + 24r4 + 121r2 + 162

)
+ (5r2 + 21)(r)(r2 + 5)i

]

Hence, V
(

I
I+1

)
= (5r2+21)(r)(r2+5)

r6+24r4+121r2+161 . This is equal to r/3 if and only if

r6 + 24r4 + 121r2 + 162− 3(5r2 + 21)(r2 + 5) = 0.

Expanding gives the conclusion. �

Claim. ∠BJH = ∠ADG ⇐⇒ 2r8 + 8r6 − 28rr − 136r2 − 102 = 0.

Proof. We proceed in the same spirit. It’s evident that V
(
K−D
G−D

)
= V (I)−1 = 2r2+6

r(r2+5) . On the other hand,
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G11 Geometry – Solutions ELMO 2013

we can compute

− 1
r · i− J
−1− J

=
rJ + i

r(1 + J)

=
1

r
·
r(3r2+11)
4r2+16 + r2(r2+5)+(4r2+16)

4r2+16 i

7r2+27
4r2+16 + r(r2+5)

4r2+16 i

=
1

real

[(
r(3r2 + 11) + (r4 + 9r2 + 16

)
i
] [

(7r2 + 27)− r(r2 + 5)i
]

=
1

real

[
r(r6 + 35r4 + 219r2 + 377) + i(4r6 + 64r4 + 300r2 + 432)

]
Hence, V

(
H−J
B−J

)
= 4r6+64r4+300r2+432

r(r6+35r4+219r2+377) . So, the equality occurs when

(r2 + 5)(4r6 + 64r4 + 300r2 + 432)− (2r2 + 6)(r6 + 35r4 + 219r2 + 377) = 0.

Expand again. �

Now all that’s left to do is factor these polynomials! The former one is (r4 − 17)(r2 + 9), and the latter is
2(r2+1)(r2+3)(r4−17). Restricted to positive r we see that both are zero if and only if r = 4

√
17. Therefore

the conditions are equivalent, occuring if and only if AD = 4
√

17. �

This problem was proposed by David Stoner. This solution was given by Evan Chen.
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G12*
Let ABC be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch AB,AC,BC
at X,Y, Z respectively. Let XY hit arcs AB,AC of ω at M,N respectively, and let P 6= X,Q 6= Y be the
points on γ such that MP = MX,NQ = NY . If I is the center of γ, prove that P, I,Q are collinear if and
only if ∠BAC = 90◦.

David Stoner

Solution. Let α be the half-angles of 4ABC, r inradius, and u, v, w tangent lengths to the incircle. Let
T = MP ∩ NQ so that I is the incenter of 4MNT . Then ∠IPT = ∠IXY = α = ∠IY X = ∠IQT gives
4TIP ∼ 4TIQ, so P, I,Q are collinear iff ∠TIP = 90◦ iff ∠MTN = 180◦ − 2α iff ∠MIN = 180◦ − α iff
MI2 = MX ·MN .

First suppose I is the center of γ. Since A, I are symmetric about XY , ∠MAN = ∠MIN . But P, I,Q are
collinear iff ∠MIN = 180◦ − α, so because arcs AN and BM sum to 90◦, P, I,Q are collinear iff arcs BM ,
MA have the same measure. Let M ′ = CI ∩ ω; then ∠BM ′I = ∠BM ′C = 90◦ − ∠BXI, so M ′XIBZ is
cyclic and ∠M ′XB = ∠M ′IB = 180◦ −∠BIC = 45◦ = ∠AXY , as desired. (There are many other ways to
finish as well.)

Conversely, if P, I,Q are collinear, then by power of a point, m(m + 2t) = MI2 − r2 = MX ·MN − r2 =
m(m+ 2t+ n)− r2, so mn = r2. But we also have m(n+ 2t) = uv and n(m+ 2t) = uw, so

r2 = mn =
uv − r2

2t

uw − r2

2t
=

uv(u+v)
u+v+w

2r cosα

uw(u+w)
u+v+w

2r cosα
=

r2

4 cos2 α

(u+ v)(u+ w)

vw
.

Simplifying using cos2 α = u2

u2+r2 = u(u+v+w)
(u+v)(u+w) , we get

0 = (u+ v)2(u+ w)2 − 4uvw(u+ v + w) = (u(u+ v + w)− vw)2,

which clearly implies (u+ v)2 + (u+ w)2 = (v + w)2, as desired. �

This problem was proposed by David Stoner. This solution was given by Victor Wang.
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G13
In 4ABC, AB < AC. D and P are the feet of the internal and external angle bisectors of ∠BAC,
respectively. M is the midpoint of segment BC, and ω is the circumcircle of 4APD. Suppose Q is on
the minor arc AD of ω such that MQ is tangent to ω. QB meets ω again at R, and the line through R
perpendicular to BC meets PQ at S. Prove SD is tangent to the circumcircle of 4QDM .

Ray Li

Solution.

A

B CDP MO

Q

R

S

We begin with a lemma.

Lemma 1. Let (A,B;C,D) be a harmonic bundle. Then the circles with diameter AB and CD are orthog-
onal.

Proof. Let ω be the circle with diameter AB. Then D lies on the pole of C with respect to ω. Hence the
inversion at ω sends C to D and vice-versa; so it fixes the circle with diameter CD, implying that the two
circles are orthogonal. �

It’s well known that (P,D;B,C) is harmonic. Let O be the midpoint of PD. If we let Q′ be the intersection
of the circles with diameter PD and BC, then ∠OQ′M = π

2 , implying that Q′ = Q. It follows that Q lies
on the circle with diameter BC; this is the key observation.

In that case, since (P,D;B,C) is harmonic and ∠PQD = π
2 , we see that QD is an angle bisector (this

could also be realized via Apollonian circles). But ∠BQC = π
2 as well! So we find that ∠PQB = ∠BQD =

∠DQC = π
4 . Then, R is the midpoint of arc PD, so SP = SD, insomuch as SO ⊥ PD.

Hence, we can just angle chase as ∠DQM = ∠SPD = ∠SDP , implying the conclusion. �

This problem and solution were proposed by Ray Li.
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G14
Let O be a point (in the plane) and T be an infinite set of points such that |P1P2| ≤ 2012 for every two
distinct points P1, P2 ∈ T . Let S(T ) be the set of points Q in the plane satisfying |QP | ≤ 2013 for at least
one point P ∈ T .

Now let L be the set of lines containing exactly one point of S(T ). Call a line `0 passing through O bad if
there does not exist a line ` ∈ L parallel to (or coinciding with) `0.

(a) Prove that L is nonempty.

(b) Prove that one can assign a line `(i) to each positive integer i so that for every bad line `0 passing
through O, there exists a positive integer n with `(n) = `0.

David Yang

Solution 1. (a) Instead of unique lines we work with good directions (e.g. northernmost points for the
direction “north”). Since S is closed and bounded there is a diameter, say AB. Then B is the unique

farthest point in the direction of the vector
−−→
AB (if there was another point C that was the same or farther

in that direction then AC would be longer than AB). �

Solution 2. (b) We can work instead with the convex hull of S, since this does not change if directions are
good. Note that bad directions correspond to lines segments that are boundaries of portions of the convex
hull (i.e. “sides” of the convex hull). For each direction, consider the corresponding side. Now, consider
the area 1 unit in front of the side. For distinct directions, these areas don’t intersect, so there must be
a countable number of them (more precisely, there are a finite number of squares with area in the interval
( 1
n+1 ,

1
n ] for every positive integer n, and thus we can enumerate the bad directions.) �

This problem and the above solutions were proposed by David Yang.

Solution 3. (b) Alternatively, take an interior point and look at the angle swept out by each side (positive
numbers with finite sum). �

This third solution was suggested by Mark Sellke.

Remark. We only need S to be a compact (closed and bounded) set in Rn for (a), and a compact set
in R2 for (b). The current elementary formulation, however, preserves the essence of the problem. Note
that the same proof works for (a), while a hyper-cylinder serves as a counterexample for (b) in Rn (more
specifically, the set of points satisfying, say, x21 + x22 ≤ 1 and 0 ≤ x3, . . . , xn ≤ 1). Indeed, for each angle
θ ∈ [0, 2π), the hyper-plane with equation sin θx1− cos θx2 = 0 is tangent to the cylinder at the set of points
of the form (cos θ, sin θ, x3, . . . , xn), yet [0, 2π) (which bijects to the real numbers) is uncountable. More
precisely, the set of points farthest 〈cos θ, sin θ, 0, . . . , 0〉 direction is simply the set of points that maximize
〈cos θ, sin θ, 0, . . . , 0〉 · 〈x1, x2, 0, . . . , 0〉 (which is at most 1, by the Cauchy-Schwarz inequality), which is just
the set of points of the form (cos θ, sin θ, x3, . . . , xn).
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N1 Number Theory – Solutions ELMO 2013

N1
Find all ordered triples of non-negative integers (a, b, c) such that a2 + 2b + c, b2 + 2c + a, and c2 + 2a + b
are all perfect squares.

Note: This problem was withdrawn from the ELMO Shortlist and used on ksun48’s mock AIME.

Matthew Babbitt

Answer. We have the trivial solutions (a, b, c) = (0, 0, 0) and (a, b, c) = (1, 1, 1), as well as the solution
(a, b, c) = (127, 106, 43) and its cyclic permutations.

Solution. The case a = b = c = 0 works. Without loss of generality, a = max{a, b, c}. If b and c are both
zero, it’s obvious that we have no solution. So, via the inequality

a2 < a2 + 2b+ c < (a+ 2)2

we find that a2 + 2b+ c = (a+ 1)2 =⇒ 2a+ 1 = 2b+ c. So,

a = b+
c− 1

2
.

Let c = 2k + 1 with k ≥ 0; plugging into the given, we find that

b2 + b+ 2 + 5k and 4k2 + 6k + 3b+ 1

are both perfect squares. Multiplying both these quantities by 4, and setting x = 2b+ 1 and y = 4k+ 3, we
find that

x2 + 5y − 8 and y2 + 6x− 11

are both even squares.

We may assume x, y ≥ 3. We now have two cases, both of which aren’t too bad:

• If x ≥ y, then x2 < x2 + 5y − 8 < (x + 3)2. Since the square is even, x2 + 5y − 8 = (x + 1)2. Then,
x = 5y−9

2 and we find that y2 + 15y− 38 is an even square. Since y2 < y2 + 15y− 38 < (y+ 8)2, there
are finitely many cases to check. The solutions are (x, y) = (3, 3) and (x, y) = (213, 87).

• Similarly, if x ≤ y, then y2 < y2 + 6x− 11 < (y+ 3)2, so y2 + 6x− 11 = (y+ 1)2. Then, y = 3x− 6 and
we find that x2 + 15x − 38 (!) is a perfect square. Amusingly, this is the exact same thing (whether
this is just a coincidence due to me selecting the equality case to be x = y, I’m not sure). Here, the
solutions are (x, y) = (3, 3) and (x, y) = (87, 255).

Converting back, we see the solutions are (0, 0, 0), (1, 1, 1) and (127, 106, 43), and permutations. �

This problem and solution were proposed by Matthew Babbitt.
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N2* Number Theory – Solutions ELMO 2013

N2*
For what polynomials P (n) with integer coefficients can a positive integer be assigned to every lattice point
in R3 so that for every integer n ≥ 1, the sum of the n3 integers assigned to any n × n × n grid of lattice
points is divisible by P (n)?

Andre Arslan

Answer. All P of the form P (x) = cxk, where c is a nonzero integer and k is a nonnegative integer.

Solution. Suppose P (x) = xkQ(x) with Q(0) 6= 0 and Q is nonconstant; then there exist infinitely many
primes p dividing some Q(n); fix one of them not dividing Q(0), and take a sequence of pairwise coprime
integers m1, n1,m2, n2, . . . with p | Q(mi), Q(ni) (we can do this with CRT).

Let f(x, y, z) be the number written at (x, y, z). Note that P (m) divides every mn×mn×m grid and P (n)
divides every mn×mn×n grid, so by Bezout’s identity, (P (m), P (n)) divides every mn×mn× (m,n) grid.
It follows that p divides every mini×mini×1 grid. Similarly, we find that p divides every minimjnj×1×1
grid whenever i 6= j, and finally, every 1× 1× 1 grid. Since p was arbitrarily chosen from an infinite set, f
must be identically zero, contradiction.

For the other direction, take a solution g to the one-dimensional case using repeated CRT (the key relation
gcd(P (m), P (n)) = P (gcd(m,n)) prevents “conflicts”): start with a positive multiple of P (1) 6= 0 at zero,
and then construct g(1), g(−1), g(2), g(−2), etc. in that order using CRT. Now for the three-dimensional
version, we can just let f(x, y, z) = g(x). �

This problem and solution were proposed by Andre Arslan.

Remark. The crux of the problem lies in the 1D case. (We use the same type of reasoning to “project” from
d dimension to d− 1 dimensions.) Note that the condition P (n) | g(i) + · · ·+ g(i+n− 1) (for the 1D case) is
“almost” the same as P (n) | g(i)−g(i+n), so we immediately find gcd(P (m), P (n)) | g(i)−g(i+gcd(m,n))
by Bezout’s identity. In particular, when m,n are coprime, we will intuitively be able to get gcd(P (m), P (n))
as large as we want unless P is of the form cxk (we formalize this by writing P = xkQ with Q(0) 6= 0).

Conversely, if P = cxk, then gcd(P (m), P (n)) = P (gcd(m,n)) renders our derived restriction gcd(P (m), P (n)) |
g(i) − g(i + gcd(m,n)) superfluous. So it “feels easy” to find nonconstant g with P (n) | g(i) − g(i + n) for
all i, n, just by greedily constructing g(0), g(1), g(−1), . . . in that order using CRT. Fortunately, g(i) + · · ·+
g(i+m− 1)− g(i)− · · · − g(i+ n− 1) = g(i+ n) + · · ·+ g(i+ n+ (m− n)− 1) for m > n, so the inductive
approach still works for the stronger condition P (n) | g(i) + · · ·+ g(i+ n− 1).

Remark. Note that polynomial constructions cannot work for P = cxd+1 in d dimensions. Suppose otherwise,
and take a minimal degree f(x1, . . . , xd); then f isn’t constant, so f ′(x1, . . . , xd) = f(x1 + 1, . . . , xd + 1) −
f(x1, . . . , xd) is a working polynomial of strictly smaller degree.
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N3
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct numbers of the form
ab, where a ∈ {3, 4, 5, 6} and b is a positive integer.

Matthew Babbitt

Solution. First, we prove a lemma.

Lemma 1. Let a0 > a1 > a2 > · · · > an be positive integers such that a0 − an < a1 + a2 + · · · + an. Then
for some 1 ≤ i ≤ n, we have

0 ≤ a0 − (a1 + a2 + · · ·+ ai) < ai.

Proof. Proceed by contradiction; suppose the inequalities are all false. Use induction to show that a0− (a1 +
· · ·+ ai) ≥ ai for each i. This becomes a contradiction at i = n. �

Let N be the integer we want to express in this form. We will prove the result by strong induction on N .
The base cases will be 3 ≤ N ≤ 10 = 6 + 3 + 1.

Let x1 > x2 > x3 > x4 be the largest powers of 3, 4, 5, 6 less than N − 3, in some order. If one of the
inequalities of the form

3 ≤ N − (x1 + · · ·+ xk) < xk + 3; 1 ≤ k ≤ 4

is true, then we are done, since we can subtract of x1, . . . , xk from N to get an N ′ with 3 ≤ N ′ < N and then
apply the inductive hypothesis; the construction for N ′ cannot use any of {x1, . . . , xk} since N ′ − xk < 3.

To see that this is indeed the case, first observe that N − 3 > x1 by construction and compute

x1 + x2 + x3 + x4 + x4 ≥ (N − 3) ·
(

1

3
+

1

4
+

1

5
+

1

6
+

1

6

)
> N − 3.

So the hypothesis of the lemma applies with a0 = N − 3 and ai = xi for 1 ≤ i ≤ 4.

Thus, we are done by induction. �

This problem and solution were proposed by Matthew Babbitt.

Remark. While the approach of subtracting off large numbers and inducting is extremely natural, it is not
immediately obvious that one should consider 3 ≤ N − (x1 + · · · + xk) < xk + 3 rather than the stronger
bound 3 ≤ N − (x1 + · · ·+xk) < xk. In particular, the solution method above does not work if one attempts
to get the latter.
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N4
Find all triples (a, b, c) of positive integers such that if n is not divisible by any integer less than 2013, then
n+ c divides an + bn + n.

Evan Chen

Answer. (a, b, c) = (1, 1, 2).

Solution. Let p be an arbitrary prime such that p ≥ 2011 · max{abc, 2013}. By the Chinese Remainder
Theorem it is possible to select an integer n satisfying the following properties:

n ≡ −c (mod p)

n ≡ −1 (mod p− 1)

n ≡ −1 (mod q)

for all primes q ≤ 2011 not dividing p − 1. This will guarantee that n is not divisible by any integer less
than 2013. Upon selecting this n, we find that

p | n+ c | an + bn + n

which implies that
an + bn ≡ c (mod p)

But n ≡ −1 (mod p− 1); hence an ≡ a−1 (mod p) by Euler’s Little Theorem. Hence we may write

p | ab(a−1 + b−1 − c) = a+ b− abc.

But since p is large, this is only possible if a+ b− abc is zero. The only triples of positive integers with that
property are (a, b, c) = (2, 2, 1) and (a, b, c) = (1, 1, 2). One can check that of these, only (a, b, c) = (1, 1, 2)
is a valid solution. �

This problem and solution were proposed by Evan Chen.

58 http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495517

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495517
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=495517


N5* Number Theory – Solutions ELMO 2013

N5*
Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and A1, A2, . . . , A2013 be 2013
(possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi−1} for i = 1, 2, . . . , 2013. Prove that there is a positive integer
N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.

Victor Wang

Remark. As Solution 3 shows, the bound can in fact be tightened to
∏2013
i=1 (|Ai|+ 1).

Solution 1. We will show that the smallest integer N such that N /∈ Ai (mod mi) is less than the bound
provided.

The idea is to use pigeonhole and the “Lagrange interpolation”-esque representation of CRT systems. Define
integers ti satisfying ti ≡ 1 (mod mi) and ti ≡ 0 (mod mj) for j 6= i. If we find nonempty sets Bi of distinct
residues mod mi with Bi − Bi (mod mi) and Ai (mod mi) disjoint, then by pigeonhole, a positive integer
solution with N ≤ m1m2···m2013

|B1|·|B2|···|B2013| must exist (more precisely, since

b1t1 + · · ·+ b2013t2013 (mod m1m2 · · ·m2013)

is injective over B1 × B2 × · · · × B2013, some two consecutively ordered solutions must differ by at most
m1m2···m2013

|B1|·|B2|···|B2013| ).

On the other hand, since 0 /∈ Ai for every i, we know such nonempty Bi must exist (e.g. take Bi = {0}).
Now suppose |Bi| is maximal; then every x (mod mi) lies in at least one of Bi, Bi + Ai, Bi − Ai (note
that x − x = 0 is not an issue when considering (Bi ∪ {x}) − (Bi ∪ {x})), or else Bi ∪ {x} would be a
larger working set. Hence mi ≤ |Bi|+ |Bi + Ai|+ |Bi − Ai| ≤ |Bi|(1 + 2|Ai|), so we get an upper bound of∏2013
i=1

mi
|Bi| ≤

∏2013
i=1 (2|Ai|+ 1), as desired. �

Remark. We can often find |Bi| significantly larger than mi
2|Ai|+1 (the bounds |Bi +Ai|, |Bi−Ai| ≤ |Bi| · |Ai|

seem really weak, and Bi + Ai, Bi − Ai might not be that disjoint either). For instance, if Ai ≡ −Ai
(mod mi), then we can get (the ceiling of) mi

|Ai|+1 .

Remark. By translation and repeated application of the problem, one can prove the following slightly
more general statement: “Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime positive integers and
A1, A2, . . . , A2013 be 2013 (possibly empty) sets with Ai a proper subset of {1, 2, . . . ,mi} for i = 1, 2, . . . , 2013.

Then for every integer n, there exists an integer x in the range (n, n +
∏2013
i=1 (2|Ai| + 1)] such that x /∈ Ai

(mod mi) for i = 1, 2, . . . , 2013. (We say A is a proper subset of B if A is a subset of B but A 6= B.)”

Remark. Let f be a non-constant integer-valued polynomial with gcd(. . . , f(−1), f(0), f(1), . . .) = 1. Then
by the previous remark, we can easily prove that there exist infinitely many positive integers n such that
the smallest prime divisor of f(n) is at least c log n, where c > 0 is any constant. (We take mi the ith prime
and Ai ≡ {n : mi | f(n)} (mod mi)—if f = a

bx
d + · · · , then |Ai| ≤ d for all sufficiently large i.)

Solution 2. We will mimic the proof of 2010 RMM Problem 1.

Suppose 1, 2, . . . , N (for some N ≥ 1) can be covered by the sets Ai (mod mi).

Observe that for fixed m and 1 ≤ a ≤ m, exactly 1 + bN−am c of 1, 2, . . . , N are a (mod m). In particular, we

have lower and upper bounds of N−m
m and N+m

m , respectively, so PIE yields

N ≤
∑
i

|Ai|
N +mi

mi
−
∑
i<j

|Ai| · |Aj |
N −mimj

mimj
± · · · .

It follows that

N
∏
i

(
1− |Ai|

mi

)
≤
∏
i

(1 + |Ai|) ,
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so N ≤
∏
i

mi
mi−|Ai| (1 + |Ai|).

Note that mi
mi−|Ai| ≤

2|Ai|+1
|Ai|+1 iff mi ≥ 2|Ai|+ 1, so we’re done unless mi ≤ 2|Ai| for some i.

In this case, there exists (by induction) 1 ≤ N ≤
∏
j 6=i(2|Aj | + 1) such that N /∈ m−1i Aj (mod mj) for all

j 6= i. Thus miN /∈ Aj (mod mj) and we trivially have miN ≡ 0 /∈ Ai (mod mi), so miN ≤
∏
k(2|Ak|+ 1),

as desired. �

This problem and the above solutions were proposed by Victor Wang.

Solution 3. We can in fact get a bound of
∏

(|Ak|+ 1) directly.

Let t = 2013. Suppose 1, 2, . . . , N are covered by the Ak (mod mk); then

zn =
∏

1≤k≤t,a∈Ak

(
1− e

2πi
mk

(n−a)
)

is a linear recurrence in e
2πi

∑t
k=1

jk
mk (where each jk ranges from 0 to |Ak|). But z0 6= 0 = z1 = · · · = zN ,

so N must be strictly less than the degree
∏

(|Ak| + 1) of the linear recurrence. Thus 1, 2, . . . ,
∏

(|Ak| + 1)
cannot all be covered, as desired. �

This third solution was suggested by Zhi-Wei Sun.

Remark. Solution 3 doesn’t require the mk to be coprime. Note that if |A1| = · · · = |At| = b − 1, then a
base b construction shows the bound of

∏
(b − 1 + 1) = bt is “tight” (if we remove the restriction that the

mk must be coprime).

However, Solutions 2 and 3 “ignore” the additive structure of CRT solution sets encapsulated in Solution
1’s Lagrange interpolation representation.
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N6*
Find all positive integers m for which there exists a function f : Z+ → Z+ such that

ff
f(n)(n)(n) = n

for every positive integer n, and f2013(m) 6= m. Here fk(n) denotes f(f(· · · f︸ ︷︷ ︸
k f ’s

(n) · · · )).

Evan Chen

Answer. All m not dividing 2013; that is, Z+ \ {1, 3, 11, 33, 61, 183, 671, 2013}.
Solution. First, it is easy to see that f is both surjective and injective, so f is a permutation of the positive
integers. We claim that the functions f which satisfy the property are precisely those functions which satisfy
fn(n) = n for every n.

For each integer n, let ord(n) denote the smallest integer k such that fk(n). These orders exist since

ff
f(n)(n)(n) = n, so ord(n) ≤ ff(n)(n); in fact we actually have

ord(n) | ff(n)(n) (8.1)

as a consequence of the division algorithm.

Since f is a permutation, it is immediate that ord(n) = ord(f(n)) for every n; this implies easily that
ord(n) = ord

(
fk(n)

)
for every integer k. In particular, ord(n) = ord

(
ff(n)−1(n)

)
. But then, applying (8.1)

to ff(n)−1(n) gives

ord(n) = ord
(
ff(n)−1(n)

)
| ff(f

f(n)−1(n))
(
ff(n)−1(n)

)
= ff

f(n)(n)+f(n)−1(n)

= ff(n)−1
(
ff

f(n)(n)(n)
)

= ff(n)−1(n)

Inductively, then, we are able to show that ord(n) | ff(n)−k(n) for every integer k; in particular, ord(n) | n,
so fn(n) = n. To see that this is actually sufficient, simply note that ord(n) = ord(f(n)) = · · · , which
implies that ord(n) | fk(n) for every k.

In particular, if m | 2013, then ord(m) | m | 2013 and f2013(m) = m. The construction for the other values
of m is left as an easy exercise. �

This problem and solution were proposed by Evan Chen.

Remark. There are many ways to express the same ideas.

For instance, the following approach (“unraveling indices”) also works: It’s not hard to show that f is a
bijection with finite cycles (when viewed as a permutation). If C = (n0, n1, . . . , n`−1) is one such cycle with

f(ni) = ni+1 for all i (extending indices mod `), then ff
f(n)(n)(n) = n holds on C iff ` | ff(ni)(ni) = ni+ni+1

for all i. But ` | nj =⇒ ` | nj−1+nj = nj−1 for fixed j, so the latter condition holds iff ` | ni for all i. Thus
f2013(n) = n is forced unlesss n - 2013.
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N7*

Let p be a prime satisfying p2 | 2p−1 − 1, n be a positive integer, and f(x) = (x−1)p
n
−(xp

n
−1)

p(x−1) . Find

the largest positive integer N such that there exist polynomials g, h ∈ Z[x] and an integer r satisfying
f(x) = (x− r)Ng(x) + p · h(x).

Victor Wang

Answer. The largest possible N is 2pn−1.

Solution 1. Let F (x) = x
1 + · · ·+ xp−1

p−1 .

By standard methods we can show that (x − 1)p
n − (xp

n−1 − 1)p has all coefficients divisible by p2. But
p2 | 2p−1 − 1 means p is odd, so working in Fp, we have

(x− 1)f(x) =

p−1∑
k=1

1

p

(
p

k

)
(−1)k−1xp

n−1k =

p−1∑
k=1

(
p− 1

k − 1

)
(−1)k−1

xp
n−1k

k

=

p−1∑
k=1

xp
n−1k

kpn−1 = F (x)p
n−1

,

where we use Fermat’s little theorem,
(
p−1
k−1
)
≡ (−1)k−1 (mod p) for k = 1, 2, . . . , p− 1, and the well-known

fact that P (xp)− P (x)p has all coefficients divisible by p for any polynomial P with integer coefficients.

However, it is easy to verify that p2 | 2p−1 − 1 if and only if p | F (−1), i.e. −1 is a root of F in Fp.
Furthermore, F ′(x) = xp−1−1

x−1 = (x+ 1)(x+ 2) · · · (x+ p− 2) in Fp, so −1 is a root of F with multiplicity 2;

hence N ≥ 2pn−1. On the other hand, since F ′ has no double roots, F has no integer roots with multiplicity
greater than 2. In particular, N ≤ 2pn−1 (note that the multiplicity of 1 is in fact pn−1 − 1, since F (1) = 0
by Wolstenholme’s theorem but 1 is not a root of F ′). �

This problem and solution were proposed by Victor Wang.

Remark. The rth derivative of a polynomial P evaluated at 1 is simply the coefficient [(x− 1)r]P (i.e. the
coefficient of (x− 1)r when P is written as a polynomial in x− 1) divided by r!.

Solution 2. This is asking to find the greatest multiplicity of an integer root of f modulo p; I claim the
answer is 2pn−1.

First, we shift x by 1 and take the negative (since this doesn’t change the greatest multiplicity) for conve-

nience, redefining f as f(x) = (x+1)p
n
−xp

n
−1

px .

Now, we expand this. We can show, by writing out and cancelling, that p1 fully divides
(
pn

k

)
only when pn−1

divides k; thus, we can ignore all terms except the ones with degree divisible by pn−1 (since they still go

away when taking it mod p), leaving f(x) = 1
px (
(
pn

pn−1

)
xp

n−pn−1

+ · · ·+
(

pn

pn−pn−1

)
xp

n−1

).

We can also show, by writing out/cancelling, that 1
p

(
pn

kpn−1

)
= 1

p

(
p
k

)
modulo p. Simplifying using this, the

expression above becomes f(x) = 1
px (
(
p
1

)
xp

n−pn−1

+ · · ·+
(
p
p−1
)
xp

n−1

) = 1
px ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Now, we ignore the 1/x for the moment (all it does is reduce the multiplicity of the root at x = 0 by 1) and

just look at the rest, P (x) = 1
p ((xp

n−1

+ 1)p − (xp
n

+ 1)).

Substituting y = xp
n−1

, this becomes 1
p ((y + 1)p − (yp + 1)); since 1

p

(
p
k

)
= 1

k

(
p−1
k−1
)
, this is equal to P (x) =

1
1

(
p−1
0

)
yp−1 + · · ·+ 1

p−1
(
p−1
p−2
)
y. (We work mod p now; the ps can be cancelled before modding out.)

We now show that P (x) has no integer roots of multiplicity greater than 2, by considering the root multi-
plicities of y times its reversal, or Q(x) = 1

p−1
(
p−1
p−2
)
yp−1 + · · ·+ 1

1

(
p−1
0

)
y.

Note that some polynomial P has a root of multiplicity m at x iff P and its first m − 1 derivatives all
have zeroes at x. (We’re using the formal derivatives here - we can prove this algebraically over Z mod p, if
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m < p.) The derivative of Q is
(
p−1
p−2
)
yp−2+ · · ·+

(
p−1
0

)
, or (y+1)p−1−yp−1, which has as a root every residue

except 0 and −1 by Fermat’s little theorem; the second derivative is a constant multiple of (y+1)p−2−yp−2,
which has no integer roots by Fermat’s little theorem and unique inverses. Therefore, no integer root of Q
has multiplicity greater than 2; we know that the factorization of a polynomial’s reverse is just the reverse of
its factorization, and integers have inverses mod p, so P (x) doesn’t have integer roots of multiplicity greater
than 2 either.

Factoring P (x) completely in y (over some extension of Fp), we know that two distinct factors can’t share a
root; thus, at most 2 factors have any given integer root, and since their degrees (in x) are each pn−1, this
means no integer root has multiplicity greater than 2pn−1.

However, we see that y = 1 is a double root of P . This is because plugging in gives P (1) = 1
p ((1 + 1)p −

(1p + 1)) = 1
p (2p − 2); by the condition, p2 divides 2p − 2, so this is zero mod p. Since 1 is its own inverse,

it’s a root of Q as well, and it’s a root of Q’s derivative so it’s a double root (so (y − 1)2 is part of Q’s
factorization). Reversing, (y − 1)2 is part of P ’s factorization as well.

Applying a well-known fact, y − 1 = xp
n−1 − 1 = (x− 1)p

n−1

modulo p, so 1 is a root of P with multiplicity
2pn−1.

Since adding back in the factor of 1/x doesn’t change this multiplicity, our answer is therefore 2pn−1. �

This second solution was suggested by Alex Smith.
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N8
We define the Fibonacci sequence {Fn}n≥0 by F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2; we
define the Stirling number of the second kind S(n, k) as the number of ways to partition a set of n ≥ 1
distinguishable elements into k ≥ 1 indistinguishable nonempty subsets.

For every positive integer n, let tn =
∑n
k=1 S(n, k)Fk. Let p ≥ 7 be a prime. Prove that

tn+p2p−1 ≡ tn (mod p)

for all n ≥ 1.

Victor Wang

Solution. Let α = 1+
√
5

2 and β = 1−
√
5

2 . By convention we extend the definition to all n, k ≥ 0 so that
S(0, 0) = 1 and for m > 0, S(m, 0) = S(0,m) = 0. It will also be convenient to define the falling factorial
(x)n = x(x− 1) · · · (x− n+ 1), where we take (x)0 = 1. Then we can extend our sequence to t0 by defining
tn =

∑n
k=0 S(n, k)Fk instead (the k = 0 term vanishes for positive n).

A simple combinatorial interpretation yields the polynomial identity
∑n
k=0 S(n, k)(x)k = xn (it is enough

to establish the result just for positive integer x). Inspired by the methods of umbral calculus (we try to

“exchange” (x)k, x
n with Fk, tn), we consider the linear map T : Z[x]→ Z satisfying T ((x)k) = Fk = αk−βk

α−β .

Because the (x)k (for k ≥ 0) form a basis of Z[x] (the standard one is {xk}k≥0), this uniquely determines
such a map, and tn = T (xn). Hence if ` = p2p − 1, we need to show that p | T (xn(1− x`)) for all n ≥ 0, or
equivalently, that p | T ((x` − 1)f(x)) for all f ∈ Z[x].

Throughout this solution we will work in Fp and use the fact that P (xp)−P (x)p has all coefficients divisible by
p for any P ∈ Z[x]. It is well-known (e.g. by Binet’s formula) that p | Fn+p2−1−Fn for all n ≥ 0 since p 6= 2, 5.
But by a simple induction on n ≥ 0 we find that T ((x)nf(x)) = Fn−1T (f(x+ n)) + FnT (xf(x+ n− 1)) for

all f ∈ Z[x], so taking n = p(p2− 1) yields T ((xp− x)p
2−1f(x)) = F−1T (f(x)) +F0T (xf(x− 1)) = T (f(x)),

where we use the fact that x(x− 1) · · · (x− p+ 1) = xp − x, F−1 = F1 − F0 = 1, and F0 = 0.

Since T ([(xp − x)p
2−1 − 1]f(x)) = 0, it suffices to show that (xp − x)p

2−1 − 1 | xp2p−1 − 1 (still in Fp, of

course). It will be convenient to work modulo (xp − x)p
2−1 − 1. First note that

(xp − x)p
2−1 − 1 | (xp − x)p

2

− (xp − x) = xp
3

− xp
2

− xp + x

| (xp
3

− xp
2

− xp + x)p + (xp
3

− xp
2

− xp + x) = xp
4

− 2xp
2

+ x,

so it’s enough to prove that xp
4−2xp

2

+x | xp2p−x (since gcd(x, (xp−x)p
2−1−1) = 1). But (xp

4−2xp
2

+x)p
2−

(xp
4−2xp

2

+x) = xp
6−3xp

4

+3xp
2−x; by a simple induction, we have xp

4−2xp
2

+x |
∑m
k=0(−1)k

(
m
k

)
xp

2m−2k

for m ≥ 2; for m = p we obtain xp
4 − 2xp

2

+ x | xp2p − x, as desired. �

This problem and solution were proposed by Victor Wang.

Remark. This is based off of the classical Bell number congruence Bn+ pp−1
p−1

≡ Bn (mod p), where Bn =∑n
k=0 S(n, k) is the number of ways to partition a set of n distinguishable elements into indistinguishable

nonempty sets (we take S(0, 0) = 1 and for m > 0, S(m, 0) = S(0,m) = 0, to deal with zero indices). We
can replace {Fn}n≥0 with any recurrence {an} satisfying an = an−1 +an−2, but Fibonacci numbers will still
appear in the main part of the solution. There is a similar solution working in Fp2 (using Binet’s formula
more directly); we encourage the reader to find it. There is also an instructive solution using the generating

function
∑
n≥0 a

kS(n, k)xn = (ax)k

(1−x)(1−2x)···(1−kx) (which holds for all k ≥ 0, and has a simple combinatorial

interpretation) for a = α, β and working in Fp2 again; we also encourage the reader to explore this line of
attack and realize its connections to umbral calculus.
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