
Exceedingly Luck-based Math Olympiad

Solutions

1. Determine all (not necessarily finite) sets S of points in the plane such
that given any four distinct points in S, there is a circle passing through
all four or a line passing through some three.

Solution The answer is any subset of a fixed circle, any subset of a fixed line, any
subset of a fixed line with one additional point not on the line, or four
points on a circle, with a fifth point as the intersection of its diagonals
or the intersection of a pair of its sides (outside the circle). It is clear
that these sets all satisfy the needed condition.

First, assume that some four points on S lie on a circle, say A, B, C,
and D, in that order. We claim that the rest of S lies on the circle,
or S consists of exactly one more point, either the intersection of the
diagonals of the quadrilateral formed by A,B,C,D, or the intersection
of two sides of the quadrilateral outside the circle. Assume there exists
a point E in S, not on the circle. Then, E,A,B,C are not concyclic,
and A,B,C are not collinear, so E lies on one of segments AB,BC,CA.
Without loss of generality, say E lies on AB. Now, consider E,B,C,D;
by similar logic to before, E lies on BC, CD, or DB, but since E,A,B
are collinear, and A,B,C are not collinear, we need E,B,D to be
collinear, that is, E = AB ∩ CD.

However, note that at most one of these intersection points can be in
S, because if not, it is easy to check that we will get a triangle with
a point in the interior in S, in which we have four points that cannot
satisfy the given condition. Additionally, we can have at most four
points on the circle, because if we have five, say A,B,C,D,E, and a
sixth point P in S lies off the circle (we know that at most one such
point exists, from before), then it must be the intersection of two lines
formed by A,B,C,D; without loss of generality, say P = AB ∩ CD.
Also, it must be the intersection of two lines formed by A,B,C,E. But
P ∈ AB, so P ∈ CE, which is impossible, since this means C,D,E are
collinear.

We are now left with the case when no four points are concyclic, which
means that any four points in S have some three collinear. Starting
with four points A,B,C,D, some three are collinear, say A,B,C. But



for any other point E ∈ S, some three of A,B,C,E are collinear,
meaning all four must be collinear. Thus, all or all but one of our
points must lie on the same line.

This exhausts all cases, and when there are fewer than four points in
S, the statement is vacuously true. It follows that the only possible
sets S are those described above.

2. Let r and s be positive integers. Define a0 = 0, a1 = 1, and an =

ran−1 + san−2 for n ≥ 2. Let fn = a1a2 · · · an. Prove that
fn

fkfn−k

is an

integer for all integers n and k such that 0 < k < n.

Solution Lemma: For nonnegative integers x, y, ax+y = axay+1 + sax−1ay. We
will prove this by induction on y. We have two base cases, y = 0 and
y = 1. When y = 0 we simply need to prove that ax = ax, which
is trivial. When y = 1, we need to prove that ax+1 = axa1 + sax−1.
But a1 = r, so this is true directly from the recurrence relation. Now
suppose we know that ax+y = axay+1 + sax−1ay for y = k and y =
k + 1. Then we have ax+k+2 = rax+k + sax+k+1 = raxak+1 + saxak+2 +
rsax−1ak + s2ax−1ak+1 = axak+3 + ax−1ak+2, which is exactly what we
want to show for y = k + 2. This completes our induction.

Now for the main proof, let f0 = 1. Then we will prove the claim by
induction on n. The base cases, n = 0 or k = 0, are trivial. Suppose we
know that fn

fkfn−k
is an integer for all smaller n. Then we have fn

fkfn−k
=

fn−1an−k+k

fkfn−k
= fn−1(an−kak+1+san−k−1ak)

fkfn−k
= fn−1an−kak+1

fkfn−k
+ fn−1san−k−1ak

fkfn−k
=

fn−1

fkfn−k−1
· ak+1 + fn−1

fk−1fn−k
· san−k−1, which is clearly an integer by the

inductive hypothesis. This completes the induction and the proof.

3. Let n > 1 be a positive integer. A 2-dimensional grid, infinite in all
directions, is given. Each 1 by 1 square in a given n by n square has
a counter on it. A move consists of taking n adjacent counters in a
row or column and sliding them each by one space along that row or
column. A returning sequence is a finite sequence of moves such that all
counters again fill the original n by n square at the end of the sequence.

(a) Assume that all counters are distinguishable except two, which are
indistinguishable from each other. Prove that any distinguishable



arrangement of counters in the n by n square can be reached by
a returning sequence.

(b) Assume all counters are distinguishable. Prove that there is no
returning sequence that switches two counters and returns the rest
to their original positions.

Solution (a) First, we will find a way to 3-cycle some counters, and then use
these cycles to construct any board.

Lemma 1. It is possible to cycle any three adjacent counters in an
L-formation, while leaving all other counters unchanged.

Proof. Suppose we have counters c1, c2, and c3 in such a formation.
Suppose without loss of generality that c1 is directly above c2 and
that c3 is directly to the right of c2. Make the following four moves:

i. Slide the column containing c1 and c2 down.

ii. Slide the row now containing c1 and c3 right.

iii. Slide the column now containing c2 and c3 up.

iv. Slide the row now containing c1 and c2 right.

This cycles the three counters. Note that performing this cycle
twice is simply cycling the in the other direction.

Now we can use this cycle to get any grid we want. To show this,
we think of this as starting from a given grid, from where we aim
to get back to the original position. To show that this can be
done, we do induction on n.

Base Case. n = 2. First, we do a cycle, if necessary, to get the
correct counter into the top-left position. Then, we do another
cycle, consisiting of the other three squares, to get the correct
counter into the top-right position. Then we are done, because
the remaining two counters are indistinguishable and thus will be
correctly placed.

Inductive Step. Assume that such an algorithm is possible for an
(n−1)×(n−1) board. In our n×n board, we can use these cycles
to get the correct counters into the topmost row, one-by-one. We
then finish the remaining positions in the leftmost column. We
are now left with an (n − 1) × (n − 1) board, so we apply the
inductive hypothesis to finish.



(b) First, I claim that any returning sequence must use an even num-
ber of moves. To see this, consider all of the positions that contain
a counter, and let S be the sum of all the x-coordinates and y-
coordinates of these positions. Any move will add either 1 or −1
to n of the x-coordinates or y-coordinates, thus changing S by n.
If we look at S mod 2n, this is equivalent to always adding n to S.
In a returning sequence, S must be the same as it was originally,
so there must be an even number of moves to make S agree with
its original value mod 2n.

Now, instead of thinking of these counters as being on an infinite
grid, we only look at their coordinates mod n. Any valid move will
simply cycle the coordinates (either x or y) mod n. Then, at any
point, for any position (x, y), there will be exactly one counter that
has those coordinates mod n, so each move is simply an n-cycle of
these mod n coordinates. Since any returning sequence consists
of an even number of moves, the coordinates will ultimately go
through an even number of n cycles, and the composition of these
cycles will be an even permuation. However, the transposition of
any two counters is an odd permuation, so a returning sequence
that switches only two counters is impossible.

4. Determine all strictly increasing functions f : N→ N satisfying nf(f(n)) =
f(n)2 for all positive integers n.

Solution The answer is f(n) = n for all n = 1, 2, . . . , N for some positive integer
N , and f(n) = an for fixed positive integer a for n > N . It is not
difficult to check that all of these f work, since if n ≤ N , nf(f(n)) =
n2 = f(n)2, and if n > N , nf(f(n)) = a2n2 = f(n)2.

First, say f(n) = an for some positive integer n, such that an ∈ N.
Then, nf(f(n)) = nf(an) = f(n)2 = a2n2, so f(an) = a(an). It
follows easily by induction that for all non-negative integers k, f(akn) =
ak+1n. In particular, an, a2n, . . . are all integers, which implies that a
itself is an integer, since if a prime p divides the denominator of a, when
a is raised to a large enough power, the power of p can no longer divide
n, making akn non-integral for large enough k.

Now, assume that f(n1) = an1 and f(n2) = bn2 for some distinct
positive integers a, b > 1. Without loss of generality, say a < b.
Choose a positive integer k such that akn1 > n2. Then, we have



f(akn1) = ak+1n1, and f(n2) = bn2, so that ak+1n1 > bn2, as f is
strictly increasing. Applying f repeatedly to both sides, we find that
ak+en1 > ben2 for all integers e > 0, but this is impossible for large
enough e, as b > a. Thus, we must have a = b.

Thus, for some positive integer a, for all n, either f(n) = n or f(n) =
an. Let n be an integer such that f(n) = an, and a > 1. Then, assume
we have some m > n such that f(m) = m. For the unique k such that
akn ≤ m < ak+1n, note that f(akn) = ak+1n. But since m ≥ akn, as f
is increasing, we need f(m) = m ≥ ak+1n, a contradiction. It follows
that either f(n) = an for all n, or there exists a positive integer N such
that f(n) = n for all n ≤ N and f(n) = an for n > N , as claimed.

5. 2010 MOPpers are assigned numbers 1 through 2010. Each one is given
a red slip and a blue slip of paper. Two positive integers, A and B, each
less than or equal to 2010 are chosen. On the red slip of paper, each
MOPper writes the remainder when the product of A and his or her
number is divided by 2011. On the blue slip of paper, he or she writes
the remainder when the product of B and his or her number is divided
by 2011. The MOPpers may then perform either of the following two
operations:

• Each MOPper gives his or her red slip to the MOPper whose
number is written on his or her blue slip.

• Each MOPper gives his or her blue slip to the MOPper whose
number is written on his or her red slip.

Show that it is always possible to perform some number of these op-
erations such that each MOPper is holding a red slip with his or her
number written on it.

Solution Note that 2011 is prime, so each slip of paper of a given color has
a different number on it. All arithmetic from now on will be done
modulo 2011 unless otherwise stated. Now suppose that person i has
red slip Ai and blue slip Bi. Then person B−1i has blue slip i, so after
performing the first operation, person i will have red slip AB−1i and
still have blue slip Bi. Similarly, if the second operation were performed
instead, then person i would have red slip Ai and blue slip A−1Bi. This
holds for every index i, so we can represent the operations simply as
(A,B)→ (AB−1, B) and (A,B)→ (A,A−1B).



Now consider a primitive root g modulo 2011 and write A = ga and B =
gb for some natural numbers a, b. Then, now considering arithmetic in
natural numbers, we can write the operations as (a, b)→ (a− b, b) and
(a, b)→ (a, b−a). These two operations allow us to apply the Euclidean
algorithm to reduce one of these two values to 0. If a becomes 0, every
MOPper has his or her red slip, and so we are done. If b becomes 0,
then we notice that the second to last pair must have been (a, a), in
which case we can simply go to (0, a) instead. However, if we started
at (a, 0) then we cannot do this, so we apply the second operation
repeatedly. We notice that as the multiples of a are cyclic modulo 2010
and these values are exponents of a primitive root, eventually we will
reach a pair equivalent to (a, a), at which point we can perform the
first operation to arrive at (0, a), as desired.

6. Let ABC be a triangle with circumcircle ω, incenter I, and A-excenter
IA. Let the incircle and the A-excircle hit BC at D and E, respectively,
and let M be the midpoint of arc BC without A. Consider the circle
tangent to BC at D and arc BAC at T . If TI intersects ω again at S,
prove that SIA and ME meet on ω.

Solution Note that the homothety around T taking the small circle to ω. This
homothety takes D to M as the tangents are parallel, so T,D,M are

collinear. Then note that ∠MBD = 1
2

_

MC= 1
2

_

MB= ∠MTB, so
4MBD ∼ 4MTB, so MD ·MT = MB2. Let ME intersect ω at
R. Then it suffices to show that R, S, IA are collinear. Note that
MB = MIA = MI = MC. Additionally, notice that E and R are
the reflections across the perpendicular bisector of BC of D and T ,
respectively. Therefore, MD = ME and MT = MR, so MI2A = ME ·
MR, so4MEIA ∼ 4MIAR and so ∠MIAE = ∠MRIA. Additionally,
as IAE ⊥ BC, we have IAE ‖ ID, so ∠MIAE = ∠MID. Finally,
MI2 = MD · MT , so ∠MID = ∠MTI = ∠MRS because MTRS
is cyclic. Therefore, ∠MRIA = ∠MRS, so R, S, IA are collinear as
desired.


